Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UA Catalina Sky Survey Discovers Possible Extinct Comet

27.12.2010
The extraterrestrial rock is tumbling through space alongside thousands of similar objects in our solar system's main asteroid belt, roughly between the orbits of Mars and Jupiter.

An asteroid discovered more than 100 years ago my not be an asteroid at all, but an extinct comet that is coming back to life, according to new observations.

The night of Dec. 11, Steve Larson, senior staff scientist with the Catalina Sky Survey, was searching for potentially hazardous asteroids when he came across what looked like a comet: a faint, wispy tail surrounding a bright, star-like core. Four images taken over the course of 30 minutes revealed the object was moving relative to the background stars.

"Its brightness of a total magnitude of 13.4 visual, which is about 900 times fainter than the faintest star you can see in a clear, dark sky, led me to suspect that it was a known comet, but I checked the comet database and got nothing," Larson said.

According to Larson, comets are thought to be a major source of Earth's water, and "extinct" comets may be useful resources for space exploration.

Further investigation revealed that the object was a known asteroid called (596) Scheila, discovered in 1906. The extraterrestrial rock is tumbling through space alongside thousands of similar objects in our solar system's main asteroid belt, roughly between the orbits of Mars and Jupiter, out of the ecliptic plane in which most planets and asteroids travel.

Catalina Sky Survey team member Alex Gibbs checked previous images in the survey's archives but found no activity until Dec. 3. At that time, the object appeared brighter and slightly diffuse.

Previous analysis of (596) Scheila's color indicated that it is composed of primitive carbonaceous material left over from the formation of the solar system and might be an extinct comet.

After the discovery was announced, the astronomical community responded by pointing many of the world's largest telescopes at the object to obtain images and spectra to determine if its tail consists of ice and gases spewing out of the body or if it is dust left behind from a collision with another asteroid. Preliminary spectra of the outburst show that the coma surrounding the asteroid is composed of dust, but more observations will be needed to understand just what is happening with (596) Scheila.

"Most asteroids are collision fragments from larger asteroids and display a range of mineral composition," Larson explained. "But a fraction are thought to be former comets whose volatile ices have been driven off by the sun. If the activity in Scheila proves to be cometary in nature, this will be only the sixth known main-belt comet, and about 100 times larger than previously identified main belt comets."

In 1998, Larson founded the Catalina Sky Survey, a NASA-supported project to discover and catalog Earth-approaching and potentially hazardous asteroids. It operates two telescopes in the Catalina Mountains and one in Australia and is currently discovering 70 percent of the world's known near-Earth objects, including one that fell in northern Sudan in 2008.

MEDIA CONTACT:
Steve Larson, Catalina Sky Survey, (520) 621-4973, slarson@lpl.arizona.edu

Steve Larson | University of Arizona
Further information:
http://www.arizona.edu

More articles from Physics and Astronomy:

nachricht Igniting a solar flare in the corona with lower-atmosphere kindling
29.03.2017 | New Jersey Institute of Technology

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>