Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UA Astronomers Witness Asteroid Smashup

29.08.2014

Using data taken by NASA's Spitzer Space Telescope, astronomers at the University of Arizona have spotted an eruption of dust around a young star, possibly the result of a smashup between large asteroids. This type of collision can eventually lead to the formation of terrestrial planets.

A few months after scientists began tracking the star, called NGC 2547-ID8, it surged with a huge amount of fresh dust between August 2012 and January 2013. 

"We think two big asteroids crashed into each other, creating a huge cloud of grains the size of very fine sand, which are now smashing themselves into smithereens and slowly leaking away from the star," said Huan Meng, the study's lead author and a graduate student in the UA Department of Planetary Sciences

This is the first time scientists have collected data before and after a planetary system smashup. The viewing offers a glimpse into the violent process of making rocky planets like Earth. 

Rocky planets begin life as dusty material circling around young stars. The material clumps together to form asteroids that occasionally run into each other. Although the asteroids often are destroyed, some grow over time and transform into proto-planets. After about 100 million years, the objects mature into full-grown, terrestrial planets. 

In the new study, Spitzer – which includes technology developed at the UA – set its heat-seeking infrared eyes on the dusty star NGC 2547-ID8, which is a solar-type star that is about 35 million years old and and lies 1,200 light-years away in the Vela constellation. Beginning in May 2012, the telescope began watching the star, sometimes daily. 

A dramatic change in the star came during a time when Spitzer had to point away from NGC 2547-ID8 because the sun was in the way. When Spitzer started observing the star again five months later, team members were shocked by the data they received. 

"We not only witnessed what appears to be the wreckage of a huge smashup, but have been able to track how it is changing – the signal is fading as the cloud destroys itself by grinding its grains down so they escape from the star," said Kate Su, an associate astronomer at the UA Department of Astronomy and Steward Observatory and co-author on the study. 

"We are watching rocky planet formation happen right in front of us," said George Rieke, a UA Regents' Professor of Astronomy who led one of the instrument-developing teams on the Spitzer telescope project and a co-author on the study. "This is a unique chance to study this process in near real time." 

Since terrestrial planet formation is a messy process that takes more than tens of millions of years, scientists rely on computer simulations to understand the process. The observations reported here open an avenue to compare those simulations with how it happens in the real world, Rieke said. 

After Spitzer's expected end of operations later this decade, astronomers will catch a glimpse of the dust around these stars with the James Webb Space Telescope, or JWST, currently under construction and planned for launch in late 2018. JWST, too, will use technology developed at the UA to observe the most distant objects in the universe: a mid-infrared-wavelength camera developed by Rieke and a near-infrared-wavelength camera developed by Regents' Professor of Astronomy Marcia Rieke, his wife. 

"Combining work with both telescopes over 20 to 25 years will provide us with a detailed look at how planets like Earth are assembled," Su said. 

The results of this study are posted online on the website of the journal Science. 

Contacts:

George Rieke

520-621-2832

grieke@as.arizona.edu

Kate Su

520-621-3445

ksu@as.arizona.edu

For images, please contact:

Whitney Clavin

Jet Propulsion Laboratory

818-354-4673

whitney.clavin@jpl.nasa.gov

George Rieke | University of Arizona

Further reports about: Arizona Asteroid Astronomy JWST NGC Observatory Space Telescope Witness asteroids terrestrial

More articles from Physics and Astronomy:

nachricht Optical lenses, hardly larger than a human hair
29.06.2016 | Universität Stuttgart

nachricht Clandestine black hole may represent new population
28.06.2016 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical lenses, hardly larger than a human hair

3D printing enables the smalles complex micro-objectives

3D printing revolutionized the manufacturing of complex shapes in the last few years. Using additive depositing of materials, where individual dots or lines...

Im Focus: Flexible OLED applications arrive

R2D2, a joint project to analyze and development high-TRL processes and technologies for manufacture of flexible organic light-emitting diodes (OLEDs) funded by the German Federal Ministry of Education and Research (BMBF) has been successfully completed.

In contrast to point light sources like LEDs made of inorganic semiconductor crystals, organic light-emitting diodes (OLEDs) are light-emitting surfaces. Their...

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

Im Focus: 3-D printing produces cartilage from strands of bioink

Strands of cow cartilage substitute for ink in a 3D bioprinting process that may one day create cartilage patches for worn out joints, according to a team of engineers. "Our goal is to create tissue that can be used to replace large amounts of worn out tissue or design patches," said Ibrahim T. Ozbolat, associate professor of engineering science and mechanics. "Those who have osteoarthritis in their joints suffer a lot. We need a new alternative treatment for this."

Cartilage is a good tissue to target for scale-up bioprinting because it is made up of only one cell type and has no blood vessels within the tissue. It is...

Im Focus: First experimental quantum simulation of particle physics phenomena

Physicists in Innsbruck have realized the first quantum simulation of lattice gauge theories, building a bridge between high-energy theory and atomic physics. In the journal Nature, Rainer Blatt‘s and Peter Zoller’s research teams describe how they simulated the creation of elementary particle pairs out of the vacuum by using a quantum computer.

Elementary particles are the fundamental buildings blocks of matter, and their properties are described by the Standard Model of particle physics. The...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Conference ‘GEO BON’ Wants to Close Knowledge Gaps in Global Biodiversity

28.06.2016 | Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

 
Latest News

Building a better battery

29.06.2016 | Life Sciences

New way out: Researchers show how stem cells exit bloodstream

29.06.2016 | Life Sciences

Crucial peatlands carbon-sink vulnerable to rising sea levels

29.06.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>