Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UA Astronomers Witness Asteroid Smashup

29.08.2014

Using data taken by NASA's Spitzer Space Telescope, astronomers at the University of Arizona have spotted an eruption of dust around a young star, possibly the result of a smashup between large asteroids. This type of collision can eventually lead to the formation of terrestrial planets.

A few months after scientists began tracking the star, called NGC 2547-ID8, it surged with a huge amount of fresh dust between August 2012 and January 2013. 

"We think two big asteroids crashed into each other, creating a huge cloud of grains the size of very fine sand, which are now smashing themselves into smithereens and slowly leaking away from the star," said Huan Meng, the study's lead author and a graduate student in the UA Department of Planetary Sciences

This is the first time scientists have collected data before and after a planetary system smashup. The viewing offers a glimpse into the violent process of making rocky planets like Earth. 

Rocky planets begin life as dusty material circling around young stars. The material clumps together to form asteroids that occasionally run into each other. Although the asteroids often are destroyed, some grow over time and transform into proto-planets. After about 100 million years, the objects mature into full-grown, terrestrial planets. 

In the new study, Spitzer – which includes technology developed at the UA – set its heat-seeking infrared eyes on the dusty star NGC 2547-ID8, which is a solar-type star that is about 35 million years old and and lies 1,200 light-years away in the Vela constellation. Beginning in May 2012, the telescope began watching the star, sometimes daily. 

A dramatic change in the star came during a time when Spitzer had to point away from NGC 2547-ID8 because the sun was in the way. When Spitzer started observing the star again five months later, team members were shocked by the data they received. 

"We not only witnessed what appears to be the wreckage of a huge smashup, but have been able to track how it is changing – the signal is fading as the cloud destroys itself by grinding its grains down so they escape from the star," said Kate Su, an associate astronomer at the UA Department of Astronomy and Steward Observatory and co-author on the study. 

"We are watching rocky planet formation happen right in front of us," said George Rieke, a UA Regents' Professor of Astronomy who led one of the instrument-developing teams on the Spitzer telescope project and a co-author on the study. "This is a unique chance to study this process in near real time." 

Since terrestrial planet formation is a messy process that takes more than tens of millions of years, scientists rely on computer simulations to understand the process. The observations reported here open an avenue to compare those simulations with how it happens in the real world, Rieke said. 

After Spitzer's expected end of operations later this decade, astronomers will catch a glimpse of the dust around these stars with the James Webb Space Telescope, or JWST, currently under construction and planned for launch in late 2018. JWST, too, will use technology developed at the UA to observe the most distant objects in the universe: a mid-infrared-wavelength camera developed by Rieke and a near-infrared-wavelength camera developed by Regents' Professor of Astronomy Marcia Rieke, his wife. 

"Combining work with both telescopes over 20 to 25 years will provide us with a detailed look at how planets like Earth are assembled," Su said. 

The results of this study are posted online on the website of the journal Science. 

Contacts:

George Rieke

520-621-2832

grieke@as.arizona.edu

Kate Su

520-621-3445

ksu@as.arizona.edu

For images, please contact:

Whitney Clavin

Jet Propulsion Laboratory

818-354-4673

whitney.clavin@jpl.nasa.gov

George Rieke | University of Arizona

Further reports about: Arizona Asteroid Astronomy JWST NGC Observatory Space Telescope Witness asteroids terrestrial

More articles from Physics and Astronomy:

nachricht Telescopes team up to find distant Uranus-sized planet through microlensing
31.07.2015 | NASA/Goddard Space Flight Center

nachricht California 'rain debt' equal to average full year of precipitation
31.07.2015 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum Matter Stuck in Unrest

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

What happens if one mixes cold and hot water? After some initial dynamics, one is left with lukewarm water—the system has thermalized to a new thermal...

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Tool making and additive technology exhibition: Fraunhofer IPT at Formnext

31.07.2015 | Trade Fair News

First Siemens-built Thameslink train arrives in London

31.07.2015 | Transportation and Logistics

California 'rain debt' equal to average full year of precipitation

31.07.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>