Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UA Astronomers Witness Asteroid Smashup

29.08.2014

Using data taken by NASA's Spitzer Space Telescope, astronomers at the University of Arizona have spotted an eruption of dust around a young star, possibly the result of a smashup between large asteroids. This type of collision can eventually lead to the formation of terrestrial planets.

A few months after scientists began tracking the star, called NGC 2547-ID8, it surged with a huge amount of fresh dust between August 2012 and January 2013. 

"We think two big asteroids crashed into each other, creating a huge cloud of grains the size of very fine sand, which are now smashing themselves into smithereens and slowly leaking away from the star," said Huan Meng, the study's lead author and a graduate student in the UA Department of Planetary Sciences

This is the first time scientists have collected data before and after a planetary system smashup. The viewing offers a glimpse into the violent process of making rocky planets like Earth. 

Rocky planets begin life as dusty material circling around young stars. The material clumps together to form asteroids that occasionally run into each other. Although the asteroids often are destroyed, some grow over time and transform into proto-planets. After about 100 million years, the objects mature into full-grown, terrestrial planets. 

In the new study, Spitzer – which includes technology developed at the UA – set its heat-seeking infrared eyes on the dusty star NGC 2547-ID8, which is a solar-type star that is about 35 million years old and and lies 1,200 light-years away in the Vela constellation. Beginning in May 2012, the telescope began watching the star, sometimes daily. 

A dramatic change in the star came during a time when Spitzer had to point away from NGC 2547-ID8 because the sun was in the way. When Spitzer started observing the star again five months later, team members were shocked by the data they received. 

"We not only witnessed what appears to be the wreckage of a huge smashup, but have been able to track how it is changing – the signal is fading as the cloud destroys itself by grinding its grains down so they escape from the star," said Kate Su, an associate astronomer at the UA Department of Astronomy and Steward Observatory and co-author on the study. 

"We are watching rocky planet formation happen right in front of us," said George Rieke, a UA Regents' Professor of Astronomy who led one of the instrument-developing teams on the Spitzer telescope project and a co-author on the study. "This is a unique chance to study this process in near real time." 

Since terrestrial planet formation is a messy process that takes more than tens of millions of years, scientists rely on computer simulations to understand the process. The observations reported here open an avenue to compare those simulations with how it happens in the real world, Rieke said. 

After Spitzer's expected end of operations later this decade, astronomers will catch a glimpse of the dust around these stars with the James Webb Space Telescope, or JWST, currently under construction and planned for launch in late 2018. JWST, too, will use technology developed at the UA to observe the most distant objects in the universe: a mid-infrared-wavelength camera developed by Rieke and a near-infrared-wavelength camera developed by Regents' Professor of Astronomy Marcia Rieke, his wife. 

"Combining work with both telescopes over 20 to 25 years will provide us with a detailed look at how planets like Earth are assembled," Su said. 

The results of this study are posted online on the website of the journal Science. 

Contacts:

George Rieke

520-621-2832

grieke@as.arizona.edu

Kate Su

520-621-3445

ksu@as.arizona.edu

For images, please contact:

Whitney Clavin

Jet Propulsion Laboratory

818-354-4673

whitney.clavin@jpl.nasa.gov

George Rieke | University of Arizona

Further reports about: Arizona Asteroid Astronomy JWST NGC Observatory Space Telescope Witness asteroids terrestrial

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>