Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UA Astronomers Witness Asteroid Smashup

29.08.2014

Using data taken by NASA's Spitzer Space Telescope, astronomers at the University of Arizona have spotted an eruption of dust around a young star, possibly the result of a smashup between large asteroids. This type of collision can eventually lead to the formation of terrestrial planets.

A few months after scientists began tracking the star, called NGC 2547-ID8, it surged with a huge amount of fresh dust between August 2012 and January 2013. 

"We think two big asteroids crashed into each other, creating a huge cloud of grains the size of very fine sand, which are now smashing themselves into smithereens and slowly leaking away from the star," said Huan Meng, the study's lead author and a graduate student in the UA Department of Planetary Sciences

This is the first time scientists have collected data before and after a planetary system smashup. The viewing offers a glimpse into the violent process of making rocky planets like Earth. 

Rocky planets begin life as dusty material circling around young stars. The material clumps together to form asteroids that occasionally run into each other. Although the asteroids often are destroyed, some grow over time and transform into proto-planets. After about 100 million years, the objects mature into full-grown, terrestrial planets. 

In the new study, Spitzer – which includes technology developed at the UA – set its heat-seeking infrared eyes on the dusty star NGC 2547-ID8, which is a solar-type star that is about 35 million years old and and lies 1,200 light-years away in the Vela constellation. Beginning in May 2012, the telescope began watching the star, sometimes daily. 

A dramatic change in the star came during a time when Spitzer had to point away from NGC 2547-ID8 because the sun was in the way. When Spitzer started observing the star again five months later, team members were shocked by the data they received. 

"We not only witnessed what appears to be the wreckage of a huge smashup, but have been able to track how it is changing – the signal is fading as the cloud destroys itself by grinding its grains down so they escape from the star," said Kate Su, an associate astronomer at the UA Department of Astronomy and Steward Observatory and co-author on the study. 

"We are watching rocky planet formation happen right in front of us," said George Rieke, a UA Regents' Professor of Astronomy who led one of the instrument-developing teams on the Spitzer telescope project and a co-author on the study. "This is a unique chance to study this process in near real time." 

Since terrestrial planet formation is a messy process that takes more than tens of millions of years, scientists rely on computer simulations to understand the process. The observations reported here open an avenue to compare those simulations with how it happens in the real world, Rieke said. 

After Spitzer's expected end of operations later this decade, astronomers will catch a glimpse of the dust around these stars with the James Webb Space Telescope, or JWST, currently under construction and planned for launch in late 2018. JWST, too, will use technology developed at the UA to observe the most distant objects in the universe: a mid-infrared-wavelength camera developed by Rieke and a near-infrared-wavelength camera developed by Regents' Professor of Astronomy Marcia Rieke, his wife. 

"Combining work with both telescopes over 20 to 25 years will provide us with a detailed look at how planets like Earth are assembled," Su said. 

The results of this study are posted online on the website of the journal Science. 

Contacts:

George Rieke

520-621-2832

grieke@as.arizona.edu

Kate Su

520-621-3445

ksu@as.arizona.edu

For images, please contact:

Whitney Clavin

Jet Propulsion Laboratory

818-354-4673

whitney.clavin@jpl.nasa.gov

George Rieke | University of Arizona

Further reports about: Arizona Asteroid Astronomy JWST NGC Observatory Space Telescope Witness asteroids terrestrial

More articles from Physics and Astronomy:

nachricht Hubble observes one-of-a-kind star nicknamed 'Nasty'
22.05.2015 | NASA/Goddard Space Flight Center

nachricht Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents
22.05.2015 | Universität Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>