Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UA Astronomers Witness Asteroid Smashup

29.08.2014

Using data taken by NASA's Spitzer Space Telescope, astronomers at the University of Arizona have spotted an eruption of dust around a young star, possibly the result of a smashup between large asteroids. This type of collision can eventually lead to the formation of terrestrial planets.

A few months after scientists began tracking the star, called NGC 2547-ID8, it surged with a huge amount of fresh dust between August 2012 and January 2013. 

"We think two big asteroids crashed into each other, creating a huge cloud of grains the size of very fine sand, which are now smashing themselves into smithereens and slowly leaking away from the star," said Huan Meng, the study's lead author and a graduate student in the UA Department of Planetary Sciences

This is the first time scientists have collected data before and after a planetary system smashup. The viewing offers a glimpse into the violent process of making rocky planets like Earth. 

Rocky planets begin life as dusty material circling around young stars. The material clumps together to form asteroids that occasionally run into each other. Although the asteroids often are destroyed, some grow over time and transform into proto-planets. After about 100 million years, the objects mature into full-grown, terrestrial planets. 

In the new study, Spitzer – which includes technology developed at the UA – set its heat-seeking infrared eyes on the dusty star NGC 2547-ID8, which is a solar-type star that is about 35 million years old and and lies 1,200 light-years away in the Vela constellation. Beginning in May 2012, the telescope began watching the star, sometimes daily. 

A dramatic change in the star came during a time when Spitzer had to point away from NGC 2547-ID8 because the sun was in the way. When Spitzer started observing the star again five months later, team members were shocked by the data they received. 

"We not only witnessed what appears to be the wreckage of a huge smashup, but have been able to track how it is changing – the signal is fading as the cloud destroys itself by grinding its grains down so they escape from the star," said Kate Su, an associate astronomer at the UA Department of Astronomy and Steward Observatory and co-author on the study. 

"We are watching rocky planet formation happen right in front of us," said George Rieke, a UA Regents' Professor of Astronomy who led one of the instrument-developing teams on the Spitzer telescope project and a co-author on the study. "This is a unique chance to study this process in near real time." 

Since terrestrial planet formation is a messy process that takes more than tens of millions of years, scientists rely on computer simulations to understand the process. The observations reported here open an avenue to compare those simulations with how it happens in the real world, Rieke said. 

After Spitzer's expected end of operations later this decade, astronomers will catch a glimpse of the dust around these stars with the James Webb Space Telescope, or JWST, currently under construction and planned for launch in late 2018. JWST, too, will use technology developed at the UA to observe the most distant objects in the universe: a mid-infrared-wavelength camera developed by Rieke and a near-infrared-wavelength camera developed by Regents' Professor of Astronomy Marcia Rieke, his wife. 

"Combining work with both telescopes over 20 to 25 years will provide us with a detailed look at how planets like Earth are assembled," Su said. 

The results of this study are posted online on the website of the journal Science. 

Contacts:

George Rieke

520-621-2832

grieke@as.arizona.edu

Kate Su

520-621-3445

ksu@as.arizona.edu

For images, please contact:

Whitney Clavin

Jet Propulsion Laboratory

818-354-4673

whitney.clavin@jpl.nasa.gov

George Rieke | University of Arizona

Further reports about: Arizona Asteroid Astronomy JWST NGC Observatory Space Telescope Witness asteroids terrestrial

More articles from Physics and Astronomy:

nachricht A tale of two pulsars' tails: Plumes offer geometry lessons to astronomers
18.01.2017 | Penn State

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>