Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U.Va. to Probe Milky Way History in Sloan Digital Sky Survey III

17.12.2008
A new project, the Apache Point Observatory Galactic Evolution Experiment, or APOGEE, will survey more than 100,000 Milky Way red giant stars — bright, bloated stars in a late stage of their evolution. APOGEE will provide enormous new insight to the processes that make stars and that drive the formation and evolution of galaxies.

Astronomy is a science of origins.

"It's the ultimate exercise in archeology," said Steven Majewski, a University of Virginia professor of astronomy and lead scientist on a new project to survey more than 100,000 Milky Way red giant stars — bright, bloated stars in a late stage of their evolution.

The project, the Apache Point Observatory Galactic Evolution Experiment, or APOGEE, is one of four experiments of the new Sloan Digital Sky Survey III, using the astronomical facilities at Apache Point Observatory in New Mexico. APOGEE was selected as a Sloan-III project through a competitive proposal led by U.Va. astronomers.

"The spectra of red giant stars contain the chemical and dynamical fingerprints needed to understand the assembly of our Milky Way galaxy," Majewski said. "Our home galaxy, the Milky Way, is a typical spiral galaxy and an important laboratory for gaining a detailed understanding of galaxies in general.

"APOGEE will be the first truly comprehensive study of the chemistry of Milky Way stars. With APOGEE, we will gain enormous insight to the processes that make stars and that drive the formation and evolution of galaxies."

Though red giants are extremely bright, those in distant parts of the Milky Way — like the center of our galaxy 25,000 light-years away — are largely obscured by massive clouds of interstellar dust scattered across the vastness of space. Because of these dust clouds, only a relatively small fraction of stars in the Milky Way can be observed in visible light.

Much more of our galaxy comes into view when astronomers use instruments that allow observations in the infrared. Infrared cameras and spectrographs observe light at wavelengths longer than visible light, allowing astronomers to peer through interstellar dust to detect the chemical makeup of stars and to calculate their motions and distances.

U.Va. astronomer Michael Skrutskie, an expert in the design of infrared cameras and spectrographs, is leading a U.Va. team in the design and construction of a unique instrument that will provide unprecedented information about the dynamics and chemical constitution of Milky Way stars.

His highly specialized spectrograph will be connected to a 2.5-meter telescope at Apache Point, allowing for detailed observation of 300 stars simultaneously. Majewski and other astronomers participating in the APOGEE project will observe thousands of red giants per clear night over the course of three years with the instrument.

"Currently, being able to observe 10 red giants per night at APOGEE's level of detail would be considered good," Majewski said.

U.Va. is trading expertise – and the new spectrograph – for membership in the Sloan Digital Sky Survey III project, which is operated by the Astronomical Research Consortium, a group of universities conducting research at Apache Point Observatory. The $36 million Sloan-III project is supported by the Sloan Foundation, federal agencies such as the National Science Foundation and Department of Energy, and by member institutions.

Skrutskie previously was principal investigator for the Two-Micron All Sky Survey, a major project that surveyed the entire sky in the infrared, providing a database of more than a billion stars and galaxies for astronomers to peruse.

That survey is helping Majewski to identify the 100,000 red giants the U.Va. team will investigate in much greater detail using Skrutskie's new spectrograph.

"APOGEE will inevitably create a lasting legacy of discovery," said U.Va. astronomy department chairman John Hawley.

Other projects of the Sloan-III survey, carried out by teams of astronomers from an international collaboration of universities and research organizations, will attempt to detect the effects of dark energy; map the stars of the Milky Way halo, and search for evidence of planets orbiting a sampling of 11,000 nearby stars.

The preceding Sloan-I and Sloan-II surveys have been widely regarded as the highest-impact astronomical projects of their time.

Fariss Samarrai | Newswise Science News
Further information:
http://www.virginia.edu

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>