Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U.Va. to Probe Milky Way History in Sloan Digital Sky Survey III

17.12.2008
A new project, the Apache Point Observatory Galactic Evolution Experiment, or APOGEE, will survey more than 100,000 Milky Way red giant stars — bright, bloated stars in a late stage of their evolution. APOGEE will provide enormous new insight to the processes that make stars and that drive the formation and evolution of galaxies.

Astronomy is a science of origins.

"It's the ultimate exercise in archeology," said Steven Majewski, a University of Virginia professor of astronomy and lead scientist on a new project to survey more than 100,000 Milky Way red giant stars — bright, bloated stars in a late stage of their evolution.

The project, the Apache Point Observatory Galactic Evolution Experiment, or APOGEE, is one of four experiments of the new Sloan Digital Sky Survey III, using the astronomical facilities at Apache Point Observatory in New Mexico. APOGEE was selected as a Sloan-III project through a competitive proposal led by U.Va. astronomers.

"The spectra of red giant stars contain the chemical and dynamical fingerprints needed to understand the assembly of our Milky Way galaxy," Majewski said. "Our home galaxy, the Milky Way, is a typical spiral galaxy and an important laboratory for gaining a detailed understanding of galaxies in general.

"APOGEE will be the first truly comprehensive study of the chemistry of Milky Way stars. With APOGEE, we will gain enormous insight to the processes that make stars and that drive the formation and evolution of galaxies."

Though red giants are extremely bright, those in distant parts of the Milky Way — like the center of our galaxy 25,000 light-years away — are largely obscured by massive clouds of interstellar dust scattered across the vastness of space. Because of these dust clouds, only a relatively small fraction of stars in the Milky Way can be observed in visible light.

Much more of our galaxy comes into view when astronomers use instruments that allow observations in the infrared. Infrared cameras and spectrographs observe light at wavelengths longer than visible light, allowing astronomers to peer through interstellar dust to detect the chemical makeup of stars and to calculate their motions and distances.

U.Va. astronomer Michael Skrutskie, an expert in the design of infrared cameras and spectrographs, is leading a U.Va. team in the design and construction of a unique instrument that will provide unprecedented information about the dynamics and chemical constitution of Milky Way stars.

His highly specialized spectrograph will be connected to a 2.5-meter telescope at Apache Point, allowing for detailed observation of 300 stars simultaneously. Majewski and other astronomers participating in the APOGEE project will observe thousands of red giants per clear night over the course of three years with the instrument.

"Currently, being able to observe 10 red giants per night at APOGEE's level of detail would be considered good," Majewski said.

U.Va. is trading expertise – and the new spectrograph – for membership in the Sloan Digital Sky Survey III project, which is operated by the Astronomical Research Consortium, a group of universities conducting research at Apache Point Observatory. The $36 million Sloan-III project is supported by the Sloan Foundation, federal agencies such as the National Science Foundation and Department of Energy, and by member institutions.

Skrutskie previously was principal investigator for the Two-Micron All Sky Survey, a major project that surveyed the entire sky in the infrared, providing a database of more than a billion stars and galaxies for astronomers to peruse.

That survey is helping Majewski to identify the 100,000 red giants the U.Va. team will investigate in much greater detail using Skrutskie's new spectrograph.

"APOGEE will inevitably create a lasting legacy of discovery," said U.Va. astronomy department chairman John Hawley.

Other projects of the Sloan-III survey, carried out by teams of astronomers from an international collaboration of universities and research organizations, will attempt to detect the effects of dark energy; map the stars of the Milky Way halo, and search for evidence of planets orbiting a sampling of 11,000 nearby stars.

The preceding Sloan-I and Sloan-II surveys have been widely regarded as the highest-impact astronomical projects of their time.

Fariss Samarrai | Newswise Science News
Further information:
http://www.virginia.edu

More articles from Physics and Astronomy:

nachricht Long-lived storage of a photonic qubit for worldwide teleportation
12.12.2017 | Max-Planck-Institut für Quantenoptik

nachricht Telescopes team up to study giant galaxy
12.12.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>