Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Types Of Rock Found On Moon By Researchers At Stony Brook University And NASA's Jet Propulsion Laboratory

20.09.2010
Using data from the Diviner Lunar Radiometer, an instrument uniquely capable of identifying common lunar silicate minerals, scientists at Stony Brook University in New York and NASA’s Jet Propulsion Laboratory have found previously unseen compositional differences in the crustal highlands of the Moon, and have confirmed the presence of anomalously silica-rich material in five distinct regions.

“In layman’s terms, we have discovered a new and fundamentally different type of rock on the Moon,” declares Dr. Timothy Glotch, assistant professor in the Department of Geosciences at Stony Brook and lead author of one of two papers on the research in this week’s issue of Science. “For decades, we’ve recognized that these spots in the crustal highlands of the Moon are different. Now we have the evidence. The Moon is more geologically complex than previously thought, and we now have to refine our ideas about its formation.”

Every mineral, and therefore every rock, absorbs and emits energy with a unique spectral signature that can be measured to reveal its identity. For the first time, the Diviner Lunar Radiometer is providing scientists with global, high-resolution infrared maps of the Moon, which are enabling them to make a definitive identification of silicates commonly found within its crust.

“Diviner is literally viewing the Moon in a whole new light,” says Dr. Benjamin Greenhagen of NASA’s Jet Propulsion Laboratory, lead author of the other paper.

Lunar geology can be roughly broken down into two categories – the anorthositic highlands, rich in calcium and aluminum, and the basaltic maria, which are abundant in iron and magnesium. Both of these crustal rocks are what’s deemed by geologists as ‘primitive’; that is, they are the direct result of crystallization from lunar mantle material.

Diviner’s observations have confirmed that most lunar terrains have spectral signatures consistent with compositions that fall into these two broad categories. However, they have also revealed that the lunar highlands may be less homogenous than previously thought.

In a wide range of terrains, Diviner revealed the presence of lunar soils with compositions more sodium rich than that of the typical anorthosite crust. The widespread nature of these soils reveals that there may have been variations in the chemistry and cooling rate of the magma ocean which formed the early lunar crust, or they could be the result of secondary processing of the early lunar crust.

Most impressively, in several locations around the Moon, Diviner has detected the presence of highly silicic minerals such as quartz, potassium-rich, and sodium-rich feldspar - minerals that are only ever found in association with highly evolved lithologies (rocks that have undergone extensive magmatic processing).

The detection of silicic minerals at these locations is a significant finding for scientists, as they occur in areas previously shown to exhibit anomalously high abundances of the element thorium, another proxy for highly evolved lithologies.

“The silicic features we’ve found on the Moon are fundamentally different from the more typical basaltic mare and anorthositic highlands,” says Dr. Glotch. “The fact that we see this composition in multiple geologic settings suggests that there may have been multiple processes producing these rocks.”

Some of the silicic features, such as the Gruithiusen Domes, possess steep slopes and rough surfaces suggesting that they may be lava domes created by the slow extrusion of viscous lava on the lunar surface (similar to the dome which formed on Mt. St. Helens after its eruption).

In other regions, such as Aristarchus, the silicic spectral signatures are confined to impact craters and their ejecta blankets. This suggests that excavation of the subsurface caused by these impacts has exposed portions of plutons, which are magmas bodies that solidified underground before reaching the surface.

So how did such highly silicic lithology form on a Moon that is dominated by calcium-rich anorthosite highlands, and iron and magnesium-rich basaltic maria?

Most of the locations occur in the Procellarum KREEP Terrane (PKT), an area on the lunar nearside known for its extensive basaltic volcanism. This has led scientists to believe that the silica-rich material present in this region is a result of hot basaltic magma intruding into and remelting the lunar crust.

However, one of the regions, Compton Belkovich, occurs on the far-side of the Moon, far from the PKT and its associated volcanism. The location of the Compton Belkovich anomaly suggests that the conditions that led to sustained heat production and volcanism within the PKT may have been present at much smaller scales on the far side of the Moon.

One thing not apparent in the data is evidence for pristine lunar mantle material, which previous studies have suggested may be exposed at some places on the lunar surface. Such material, rich in iron and magnesium, would be readily detected by Diviner.

However, even in the South Pole Aitken Basin (SPA), the largest, oldest, and deepest impact crater on the Moon - deep enough to have penetrated through the crust and into the mantle - there is no evidence of mantle material.

The implications of this are as yet unknown - perhaps there are no such exposures of mantle material, or maybe they occur in areas too small for Diviner to detect.

However it’s likely that if the impact that formed this crater did excavate any mantle material, it has since been mixed with crustal material from later impacts inside and outside SPA. "The new Diviner data will help in selecting the appropriate landing sites for future missions to return samples from SPA. We want to use these samples to date the SPA-forming impact and potentially study the lunar mantle, so it’s important to use Diviner data to identify areas with minimal mixing. ” says Greenhagen.

The Diviner Lunar Radiometer will continue to provide detailed infrared and solar reflectance maps of the Moon for the remainder of the LRO mission.

Donna Bannon | Newswise Science News
Further information:
http://www.stonybrook.edu

Further reports about: Jet Engines Moon NASA NASA’s Kepler Mission PKT Propulsion Radiometer SpA Stony lunar base lunar surface

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>