Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New Types Of Rock Found On Moon By Researchers At Stony Brook University And NASA's Jet Propulsion Laboratory

Using data from the Diviner Lunar Radiometer, an instrument uniquely capable of identifying common lunar silicate minerals, scientists at Stony Brook University in New York and NASA’s Jet Propulsion Laboratory have found previously unseen compositional differences in the crustal highlands of the Moon, and have confirmed the presence of anomalously silica-rich material in five distinct regions.

“In layman’s terms, we have discovered a new and fundamentally different type of rock on the Moon,” declares Dr. Timothy Glotch, assistant professor in the Department of Geosciences at Stony Brook and lead author of one of two papers on the research in this week’s issue of Science. “For decades, we’ve recognized that these spots in the crustal highlands of the Moon are different. Now we have the evidence. The Moon is more geologically complex than previously thought, and we now have to refine our ideas about its formation.”

Every mineral, and therefore every rock, absorbs and emits energy with a unique spectral signature that can be measured to reveal its identity. For the first time, the Diviner Lunar Radiometer is providing scientists with global, high-resolution infrared maps of the Moon, which are enabling them to make a definitive identification of silicates commonly found within its crust.

“Diviner is literally viewing the Moon in a whole new light,” says Dr. Benjamin Greenhagen of NASA’s Jet Propulsion Laboratory, lead author of the other paper.

Lunar geology can be roughly broken down into two categories – the anorthositic highlands, rich in calcium and aluminum, and the basaltic maria, which are abundant in iron and magnesium. Both of these crustal rocks are what’s deemed by geologists as ‘primitive’; that is, they are the direct result of crystallization from lunar mantle material.

Diviner’s observations have confirmed that most lunar terrains have spectral signatures consistent with compositions that fall into these two broad categories. However, they have also revealed that the lunar highlands may be less homogenous than previously thought.

In a wide range of terrains, Diviner revealed the presence of lunar soils with compositions more sodium rich than that of the typical anorthosite crust. The widespread nature of these soils reveals that there may have been variations in the chemistry and cooling rate of the magma ocean which formed the early lunar crust, or they could be the result of secondary processing of the early lunar crust.

Most impressively, in several locations around the Moon, Diviner has detected the presence of highly silicic minerals such as quartz, potassium-rich, and sodium-rich feldspar - minerals that are only ever found in association with highly evolved lithologies (rocks that have undergone extensive magmatic processing).

The detection of silicic minerals at these locations is a significant finding for scientists, as they occur in areas previously shown to exhibit anomalously high abundances of the element thorium, another proxy for highly evolved lithologies.

“The silicic features we’ve found on the Moon are fundamentally different from the more typical basaltic mare and anorthositic highlands,” says Dr. Glotch. “The fact that we see this composition in multiple geologic settings suggests that there may have been multiple processes producing these rocks.”

Some of the silicic features, such as the Gruithiusen Domes, possess steep slopes and rough surfaces suggesting that they may be lava domes created by the slow extrusion of viscous lava on the lunar surface (similar to the dome which formed on Mt. St. Helens after its eruption).

In other regions, such as Aristarchus, the silicic spectral signatures are confined to impact craters and their ejecta blankets. This suggests that excavation of the subsurface caused by these impacts has exposed portions of plutons, which are magmas bodies that solidified underground before reaching the surface.

So how did such highly silicic lithology form on a Moon that is dominated by calcium-rich anorthosite highlands, and iron and magnesium-rich basaltic maria?

Most of the locations occur in the Procellarum KREEP Terrane (PKT), an area on the lunar nearside known for its extensive basaltic volcanism. This has led scientists to believe that the silica-rich material present in this region is a result of hot basaltic magma intruding into and remelting the lunar crust.

However, one of the regions, Compton Belkovich, occurs on the far-side of the Moon, far from the PKT and its associated volcanism. The location of the Compton Belkovich anomaly suggests that the conditions that led to sustained heat production and volcanism within the PKT may have been present at much smaller scales on the far side of the Moon.

One thing not apparent in the data is evidence for pristine lunar mantle material, which previous studies have suggested may be exposed at some places on the lunar surface. Such material, rich in iron and magnesium, would be readily detected by Diviner.

However, even in the South Pole Aitken Basin (SPA), the largest, oldest, and deepest impact crater on the Moon - deep enough to have penetrated through the crust and into the mantle - there is no evidence of mantle material.

The implications of this are as yet unknown - perhaps there are no such exposures of mantle material, or maybe they occur in areas too small for Diviner to detect.

However it’s likely that if the impact that formed this crater did excavate any mantle material, it has since been mixed with crustal material from later impacts inside and outside SPA. "The new Diviner data will help in selecting the appropriate landing sites for future missions to return samples from SPA. We want to use these samples to date the SPA-forming impact and potentially study the lunar mantle, so it’s important to use Diviner data to identify areas with minimal mixing. ” says Greenhagen.

The Diviner Lunar Radiometer will continue to provide detailed infrared and solar reflectance maps of the Moon for the remainder of the LRO mission.

Donna Bannon | Newswise Science News
Further information:

Further reports about: Jet Engines Moon NASA NASA’s Kepler Mission PKT Propulsion Radiometer SpA Stony lunar base lunar surface

More articles from Physics and Astronomy:

nachricht Space observation with radar to secure Germany's space infrastructure
23.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1
21.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

Don't Give the Slightest Chance to Toxic Elements in Medicinal Products

23.03.2018 | Life Sciences

Sensitive grip

23.03.2018 | Materials Sciences

No compromises: Combining the benefits of 3D printing and casting

23.03.2018 | Process Engineering

Science & Research
Overview of more VideoLinks >>>