Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Tying the knot with computer-generated holograms: Winding optical path moves matter

3-D optical trapping technique described in Optics Express holds potential for applications in energy, medicine

In the latest twist on optical knots, New York University (NYU) physicists have discovered a new method to create extended and knotted optical traps in three dimensions.

This method, which the NYU scientists describe in the Optical Society's (OSA) open-access journal Optics Express, produces "bright" knots, where the maximum of the light intensity traces out a knotted trajectory in space, for the first time allowing microscopic objects to be trapped along the path of the knot. The method may even, one day, help enable fusion energy as a practical power source, according to the NYU team.

Optical traps can be used to confine and manipulate small objects—ranging in size from a few nanometers to several hundred micrometers—in 3-D. They work because variations in the intensity of the light produce forces that push small objects toward bright regions. The trapping of small objects is widely used for a broad range of research applications in biophysics, condensed matter physics and medical diagnostics.

Ordinary optical traps use Gaussian laser beams that focus to a spot. The beams being used to create extended optical traps focus instead to curves, much like the bright patterns on the bottom of swimming pools. And these bright curves can be tied in knots.

Knotted traps are made by imprinting a computer-generated hologram on the wavefronts of an otherwise ordinary beam of light. NYU undergraduate student Elisabeth Shanblatt and NYU physicist David Grier, the authors of the Optics Express paper, use a "liquid-crystal spatial light modulator" to project their holograms. This is essentially the first cousin of a conventional LCD television screen. The spatial light modulator imprints a calculated pattern of phase shifts onto the light. When the modified beam is brought to a focus with a high-power lens, the region of maximum intensity takes the form of a 3-D curve. This curve can cross over and through itself to trace out a knot. Moreover, the same hologram can redirect the light's radiation pressure to have a component along the curve, so that the total optical force "threads the knot."

When Shanblatt and Grier began this investigation, they thought that creating knots would be a compelling and aesthetically pleasing demonstration of their method's power. Once the knots actually worked, they realized that there are very few—if any—other practical ways to create knotted force fields. Previously reported knotted vortex fields have intensity minima along the knot, rather than the intensity maxima, or "bright knots" that can be created using the computer-generated holograms.

Shanblatt was working on a project with Grier investigating these holographic optical traps, when they discovered a method for projecting holographic optical traps along arbitrary curves in 3-D, with amplitude and phase profiles independently specified (See Figure).

"The knotted optical force fields we created use intensity gradients to hold microscopic objects in place and phase gradients to thread them through the knot," says Shanblatt, describing their method. "These optical knots are a special type of a very general class of 3-D optical traps that can be created using holographic techniques."

Ordinary optical traps have current applications in biophysics, where they are used as surgical tools and to probe the elastic properties of biomolecules, and in condensed matter physics, where they assemble nanomaterials into 3-D functional structures and gauge the forces between microscopic objects. Extended optical traps are especially handy in moving small objects such as biological cells through microfluidic lab-on-a-chip devices. And they can be used to measure very small interactions among such objects, which is helpful for medical diagnostic tests.

Perhaps the most exciting and futuristic potential application the NYU team sees for their method is to create knotted current loops of charged particles in high-temperature plasmas. This is a long-sought-after goal for developing fusion energy as a practical power source.

How can their knots of light solve problems of fusion energy? Fusion reactors work by slamming light atomic nuclei into each other so hard that the nuclei fuse into heavier elements, releasing lots of energy. The best way to accomplish this, Grier says, is to heat the atoms to a high enough temperature so that they can overcome all of the barriers to fusion. At these temperatures, the atoms' electrons ionize and the gas becomes a plasma.

This is doubly good, notes Grier, because you can pass large electric currents through the plasma, therefore heating it still more. "You can also act on the currents with magnetic fields to contain the hot plasma, preventing it from destroying its physical container. These fusion plasmas are literally as hot as the core of the sun," he adds.

A problem occurs when currents flowing through plasma in a fusion reactor become unstable; this is similar to what occurs when the currents flowing through the plasma in a neon sign flicker. The currents thrash around, cool the plasma, damage the container, and generally prevent the process from generating useful energy.

"If the currents in a plasma are tied into a knot, the knot can eliminate most, if not all, of these instabilities because the magnetic field lines generated by the knotted current can't pass though each other," explains Grier.

Shanblatt and Grier believe that projecting a knotted optical force field into a plasma might prove to be a good way to initiate a knotted current loop. If so, the knotted current could then be ramped up by other conventional means. The result? Perhaps, a stable, high-temperature plasma capable of producing bountiful fusion energy.

Paper: "Extended and Knotted Optical Traps in Three Dimensions," Elisabeth R. Shanblatt, David G. Grier, Optics Express, Vol. 19, Issue 7, pp. 5833-5838,

EDITOR'S NOTE: A high-resolution figure of the holographic trap is available upon request. Please contact Angela Stark,

About Optics Express

Optics Express reports on new developments in all fields of optical science and technology every two weeks. The journal provides rapid publication of original, peer-reviewed papers. It is published by the Optical Society and edited by C. Martijn de Sterke of the University of Sydney. Optics Express is an open-access journal and is available at no cost to readers online at

About OSA

Uniting more than 106,000 professionals from 134 countries, the Optical Society (OSA) brings together the global optics community through its programs and initiatives. Since 1916 OSA has worked to advance the common interests of the field, providing educational resources to the scientists, engineers and business leaders who work in the field by promoting the science of light and the advanced technologies made possible by optics and photonics. OSA publications, events, technical groups and programs foster optics knowledge and scientific collaboration among all those with an interest in optics and photonics. For more information, visit

Angela Stark | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>



Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

More VideoLinks >>>