Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tying the knot with computer-generated holograms: Winding optical path moves matter

16.03.2011
3-D optical trapping technique described in Optics Express holds potential for applications in energy, medicine

In the latest twist on optical knots, New York University (NYU) physicists have discovered a new method to create extended and knotted optical traps in three dimensions.

This method, which the NYU scientists describe in the Optical Society's (OSA) open-access journal Optics Express, produces "bright" knots, where the maximum of the light intensity traces out a knotted trajectory in space, for the first time allowing microscopic objects to be trapped along the path of the knot. The method may even, one day, help enable fusion energy as a practical power source, according to the NYU team.

Optical traps can be used to confine and manipulate small objects—ranging in size from a few nanometers to several hundred micrometers—in 3-D. They work because variations in the intensity of the light produce forces that push small objects toward bright regions. The trapping of small objects is widely used for a broad range of research applications in biophysics, condensed matter physics and medical diagnostics.

Ordinary optical traps use Gaussian laser beams that focus to a spot. The beams being used to create extended optical traps focus instead to curves, much like the bright patterns on the bottom of swimming pools. And these bright curves can be tied in knots.

Knotted traps are made by imprinting a computer-generated hologram on the wavefronts of an otherwise ordinary beam of light. NYU undergraduate student Elisabeth Shanblatt and NYU physicist David Grier, the authors of the Optics Express paper, use a "liquid-crystal spatial light modulator" to project their holograms. This is essentially the first cousin of a conventional LCD television screen. The spatial light modulator imprints a calculated pattern of phase shifts onto the light. When the modified beam is brought to a focus with a high-power lens, the region of maximum intensity takes the form of a 3-D curve. This curve can cross over and through itself to trace out a knot. Moreover, the same hologram can redirect the light's radiation pressure to have a component along the curve, so that the total optical force "threads the knot."

When Shanblatt and Grier began this investigation, they thought that creating knots would be a compelling and aesthetically pleasing demonstration of their method's power. Once the knots actually worked, they realized that there are very few—if any—other practical ways to create knotted force fields. Previously reported knotted vortex fields have intensity minima along the knot, rather than the intensity maxima, or "bright knots" that can be created using the computer-generated holograms.

Shanblatt was working on a project with Grier investigating these holographic optical traps, when they discovered a method for projecting holographic optical traps along arbitrary curves in 3-D, with amplitude and phase profiles independently specified (See Figure).

"The knotted optical force fields we created use intensity gradients to hold microscopic objects in place and phase gradients to thread them through the knot," says Shanblatt, describing their method. "These optical knots are a special type of a very general class of 3-D optical traps that can be created using holographic techniques."

Ordinary optical traps have current applications in biophysics, where they are used as surgical tools and to probe the elastic properties of biomolecules, and in condensed matter physics, where they assemble nanomaterials into 3-D functional structures and gauge the forces between microscopic objects. Extended optical traps are especially handy in moving small objects such as biological cells through microfluidic lab-on-a-chip devices. And they can be used to measure very small interactions among such objects, which is helpful for medical diagnostic tests.

Perhaps the most exciting and futuristic potential application the NYU team sees for their method is to create knotted current loops of charged particles in high-temperature plasmas. This is a long-sought-after goal for developing fusion energy as a practical power source.

How can their knots of light solve problems of fusion energy? Fusion reactors work by slamming light atomic nuclei into each other so hard that the nuclei fuse into heavier elements, releasing lots of energy. The best way to accomplish this, Grier says, is to heat the atoms to a high enough temperature so that they can overcome all of the barriers to fusion. At these temperatures, the atoms' electrons ionize and the gas becomes a plasma.

This is doubly good, notes Grier, because you can pass large electric currents through the plasma, therefore heating it still more. "You can also act on the currents with magnetic fields to contain the hot plasma, preventing it from destroying its physical container. These fusion plasmas are literally as hot as the core of the sun," he adds.

A problem occurs when currents flowing through plasma in a fusion reactor become unstable; this is similar to what occurs when the currents flowing through the plasma in a neon sign flicker. The currents thrash around, cool the plasma, damage the container, and generally prevent the process from generating useful energy.

"If the currents in a plasma are tied into a knot, the knot can eliminate most, if not all, of these instabilities because the magnetic field lines generated by the knotted current can't pass though each other," explains Grier.

Shanblatt and Grier believe that projecting a knotted optical force field into a plasma might prove to be a good way to initiate a knotted current loop. If so, the knotted current could then be ramped up by other conventional means. The result? Perhaps, a stable, high-temperature plasma capable of producing bountiful fusion energy.

Paper: "Extended and Knotted Optical Traps in Three Dimensions," Elisabeth R. Shanblatt, David G. Grier, Optics Express, Vol. 19, Issue 7, pp. 5833-5838, http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-19-7-5833

EDITOR'S NOTE: A high-resolution figure of the holographic trap is available upon request. Please contact Angela Stark, astark@osa.org.

About Optics Express

Optics Express reports on new developments in all fields of optical science and technology every two weeks. The journal provides rapid publication of original, peer-reviewed papers. It is published by the Optical Society and edited by C. Martijn de Sterke of the University of Sydney. Optics Express is an open-access journal and is available at no cost to readers online at http://www.OpticsInfoBase.org/OE.

About OSA

Uniting more than 106,000 professionals from 134 countries, the Optical Society (OSA) brings together the global optics community through its programs and initiatives. Since 1916 OSA has worked to advance the common interests of the field, providing educational resources to the scientists, engineers and business leaders who work in the field by promoting the science of light and the advanced technologies made possible by optics and photonics. OSA publications, events, technical groups and programs foster optics knowledge and scientific collaboration among all those with an interest in optics and photonics. For more information, visit http://www.osa.org.

Angela Stark | EurekAlert!
Further information:
http://www.osa.org

More articles from Physics and Astronomy:

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

nachricht Airborne thermometer to measure Arctic temperatures
11.01.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>