Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Turning loss to gain: Cutting power could dramatically boost laser output

27.10.2014

Lasers – devices that deliver beams of highly organized light – are so deeply integrated into modern technology that their basic operations would seem well understood. CD players, medical diagnostics and military surveillance all depend on lasers.

Re-examining longstanding beliefs about the physics of these devices, Princeton engineers have now shown that carefully restricting the delivery of power to certain areas within a laser could boost its output by many orders of magnitude. The finding, published Oct. 26 in the journal Nature Photonics, could allow far more sensitive and energy-efficient lasers, as well as potentially more control over the frequencies and spatial pattern of light emission.


Engineers at Princeton found that by carefully shaping the area to which energy is delivered within a laser can dramatically improve the laser's performance. The researchers developed a mathematical approach to optimizing the pattern of energy delivery to achieve a desired outcome. In the case shown, pumping energy into a diamond shape produces powerful directional emission of light from the laser.

Credit: Omer Malik, Tureci Group, Princeton University

"It's as though you are using loss to your advantage," said graduate student Omer Malik, an author of the study along with Li Ge, now an assistant professor at the City University of New York, and Hakan Tureci, assistant professor of electrical engineering at Princeton.

The researchers said that restricting the delivery of power causes much of the physical space within a laser to absorb rather than produce light. In exchange, however, the optimally efficient portion of the laser is freed from competition with less efficient portions and shines forth far more brightly than previous estimates had suggested.

... more about:
»Princeton »delivery »lasers »spatial »studies »wavelength

The results, based on mathematical calculations and computer simulations, still need to be verified in experiments with actual lasers, but the researchers said it represents a new understanding of the fundamental processes that govern how lasers produce light.

"Distributing gain and loss within the material is a higher level of design – a new tool – that had not been used very systematically until now," Tureci said.

The heart of a laser is a material that emits light when energy is supplied to it. When a low level of energy is added, the light is "incoherent," essentially meaning that it contains a mix of wavelengths (or colors). As more energy is added, the material suddenly reaches a "lasing" threshold when it emits coherent light of a particular wavelength.

The entire surface of the material does not emit laser light; rather, if the material is arranged as a disc, for example, the light might come from a ring close to the edge. As even more energy is added, more patterns emerge – for example a ring closer to the center might reach the laser threshold. These patterns – called modes – begin to interact and sap energy from each other. Because of this competition, subsequent modes requiring higher energy may never reach their lasing thresholds. However, Tureci's research group found that some of these higher threshold modes were potentially far more efficient than the earlier ones if they could just be allowed to function without competition.

The researchers showed this selection could be accomplished by directing current only to the physical location where the desired mode originates. In particular, they showed how to calculate exactly how beneficial such targeting would be – and the answer was much more than expected.

Previous studies had looked at applying electric current only to the part of the laser that first reaches threshold, which succeeded in lowering the overall amount of power required to get that the laser to turn on. However, these studies did not consider the full range of modes, nor provide a way to calculate how brightness and efficiency could be controlled by targeting the delivery of current.

Instead of looking at just the first modes, Tureci's team examined dozens of possible modes and found ones that were optimally efficient. In one simulation, the most effective mode was preceded by 29 other less efficient modes that could turn on first and monopolize the pump energy. The researchers showed that applying electric current only to the pattern associated with this mode would cause it to light up first, free of competition. Targeting these higher order modes produced improvements of efficiency ranging from 100-fold to 10,000-fold, depending on the size, shape, and material of the cavity.

"We were surprised when we ran the actual numbers to see how much improvement we could get," Tureci said.

Previously, scientists designing lasers had two main ways to influence the performance: choosing the basic material that emits the light and designing the physical shape of the device – or cavity – that contains the material. The new paper now demonstrates a third approach: careful engineering of gain and loss regions within the laser.

Once a laser has been built with the fine-grained electrical connections that allow this targeting, then its performance can be controlled "on the fly," Tureci said. "Not just during fabrication."

Overall, the mathematical framework established by the researchers allows researchers to understand the full impact of one mode within the laser sapping energy from another – an effect known as "spatial hole burning." Disentangling these interactions would allow the selection of just one mode, or perhaps small number of different modes, that operate most efficiently, the researchers said.

If born out in actual lasers, the results could lead to laser devices becoming more portable. A medical diagnostic device or a bomb-detecting sensor that would have required a wall outlet, might be able to function with just batteries, Tureci said.

Tureci said the technology needed to target the delivery of power within a laser is entirely feasible for many common lasers. Just how fine the targeting needs to be depends on the wavelength of light being produced. For typical lasers described in their study, the power would need to be delivered to a space on the scale or micrometers, or thousandths of a millimeter.

Funding for the research came from the National Science Foundation through the Mid-Infrared Technologies for Health and the Environment center based at Princeton. Additional funding came from the Defense Advanced Research Projects Agency.

Steven Schultz | Eurek Alert!
Further information:
http://www.princeton.edu

Further reports about: Princeton delivery lasers spatial studies wavelength

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>