Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From Turbine Erosion to Supernovae: Cavitation Bubbles’ Violent Collapse Gives Insight into a Wide Range of Fluid Phenomena

21.11.2011
Almost twenty-five thousand feet above the Earth’s surface, on European Space Agency (ESA) parabolic flight number 42, a carefully staged fluid dynamical drama unfolds.

An electrical spark in a drop of water creates a bubble of hot vapor. As the bubble rapidly expands and cools, pressure from the surrounding liquid pushes back, forcing a violent collapse.

The ensuing shock waves reverberate inside the water drop, generating secondary bubbles whose implosion near the surface sends thin, hair-like jets shooting outward. It all happens in the blink of an eye, but the high-speed cameras of a research team from the Ecole Polytechnique Federale de Lausanne (EPFL) in Switzerland, have for the first time captured the action with 24,000-frames-per-second precision.

The team will present their findings at the 64th Annual Meeting of the American Physical Society's (APS) Division of Fluid Dynamics (DFD), held in Baltimore, Md., Nov. 20 – 22.

The formation and collapse of bubbles within fluids can be a big engineering problem. Called cavitation, the process may erode vital pieces of mechanical equipment such as turbines or propellers. Seeking to better understand the dynamics of cavitation bubbles within liquid drops, the EPFL team created this type of bubble in microgravity conditions aboard the ESA parabolic flight. The microgravity was important because it allowed the team to form nearly spherical marble-sized drops of liquid, and eliminated the additional variable of gravitational pressure. The team’s results reveal high-speed jets of water and strong pressure shock waves that could indeed damage nearby surfaces. But perhaps more surprising was the way the jets that resulted from asymmetrically placed bubbles resembled images of some supernovae in binary star systems.

“In the final stage of their lives [Type II supernovae] collapse under their own weight, almost as if they were empty inside,” says team member Mohamed Farhat, who notes that similar processes could be at work in both the collapse of cavitation bubbles in spherical water drops and the collapse of larger spherical fluids, such as stars or gas clouds. The team is currently collaborating with supernovae researchers at Oxford University to further investigate possible parallels between the two phenomena. And while cresting the top of an arc in an Airbus A300 Zero-G plane gave team members the exciting opportunity to experience weightlessness, their new line of research returns them to a weighed down world, as they study the direct effects that gravity has on cavitation. Initial results indicate gravity itself can play a role in the formation of jets during bubble collapse, Farhat says.

The talk, “Bubbles in drops: from cavitation to exploding stars,” is at 1:29 p.m. on Tuesday, Nov. 22, in Room 303.

Abstract: http://absimage.aps.org/image/MWS_DFD11-2011-002087.pdf

MORE MEETING INFORMATION
The 64th Annual DFD Meeting is hosted by the Johns Hopkins University, the University of Maryland, the University of Delaware and the George Washington University. Howard University and the U.S. Naval Academy are also participating in the organization of the meeting. It will be held at the Baltimore Convention Center, located in downtown Baltimore, Md. All meeting information, including directions to the Convention Center, is at: http://www.dfd2011.jhu.edu/index.html
USEFUL LINKS
Main Meeting Web Site: http://www.dfd2011.jhu.edu/index.html
Search Abstracts: http://meeting.aps.org/Meeting/DFD11/Content/2194
Directions and Maps: http://www.dfd2011.jhu.edu/venuemaps.html
PRESS REGISTRATION
Credentialed full-time journalists and professional freelance journalists working on assignment for major publications or media outlets are invited to attend the conference free of charge. If you are a reporter and would like to attend, please contact Charles Blue (cblue@aip.org, 301-209-3091).
SUPPORT DESK FOR REPORTERS
A media-support desk will be located in the exhibit area. Press announcements and other news will be available in the Virtual Press Room (see below).
VIRTUAL PRESS ROOM
The APS Division of Fluid Dynamics Virtual Press Room features news releases, graphics, videos, and other information to aid in covering the meeting on site and remotely. See: http://www.aps.org/units/dfd/pressroom/index.cfm

Charles E. Blue | Newswise Science News
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

nachricht Magnetic moment of a single antiproton determined with greatest precision ever
19.01.2017 | Johannes Gutenberg-Universität Mainz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>