Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TUM and JGU activate new source of ultra-cold neutrons

09.11.2016

Collaborative project results in the construction of a second UCN source at the TRIGA research reactor in Mainz / Blueprint for Munich-based high-efficiency source

Researchers from the Technical University of Munich (TUM) and Johannes Gutenberg University Mainz (JGU) have opened a new chapter in their long-standing collaboration concerning the generation of ultra-cold neutrons (UCN). A second source of ultra-cold neutrons has recently been installed at the TRIGA research reactor in Mainz.


Researchers from TUM and JGU during installation work on the Mainz TRIGA UCN source

photo/©: Heinz-Martin Schmidt


UCN source installed on beam tube C of the TRIGA reactor in Mainz

photo/©: Heinz-Martin Schmidt

In initial tests, this source has been delivering excellent results. Neutrons are the neutral particles that form part of the atomic nucleus. In unbound form, as so-called free neutrons, they are unstable and decay rapidly.

Experiments with ultra-cold neutrons are of special relevance for fundamental research in physics, particularly in the fields of cosmology and particle physics. For this purpose, free neutrons are cooled to very low temperatures, slowing down their movement to a level where they can be stored in special containers.

The first source of ultra-cold neutrons was established in Mainz in 2006 in a joint project with TUM. Based on the experience gained with this system, an optimized source was installed on beam tube D of the TRIGA reactor in Mainz within the context of the Cluster of Excellence "Precision Physics, Fundamental Interactions and Structure of Matter" (PRISMA). This source is also made available to external users and is utilized for such tasks as measuring the half-life of a free neutron. This source is mainly employed in pulse mode operation.

Last winter, scientists from Munich and Mainz installed a second neutron source on beam tube C. The components were built at TUM, then transported to Mainz, and installed within seven days. "We have learnt quite a lot in the last few years and have reconstructed the ion source on beam tube C to improve it," said Dr. Andreas Frei of the Research Neutron Source Heinz Maier-Leibnitz (FRM II) at TUM, who has been participating in the project since the early days in 2006.

The Munich scientists are using the results of the tests and experience gained with the system in Mainz to design a high-efficiency source to be installed at the FRM II in Garching operating at 20 megawatt reactor power. "We are testing individual components here and will use the data collected to develop materials for our future source facility," explained Professor Stephan Paul of TUM. The planned facility will be used to investigate fundamental aspects of the properties of the neutron.

"Our new UCN source is supplying outstanding results, and along with our colleagues from TUM we are very pleased that the installation was completed in such a short time," added Professor Tobias Reich of Johannes Gutenberg University Mainz. "We expect in future to obtain new insights into ways in which we can further upgrade such a source of ultra-cold neutrons." Access to the device on beam tube C will also be provided to other research teams in coming years. The source generates ultra-cold as well as cold neutrons, which can be used, for example, for structural investigations.

The cooperation agreement between JGU and the Research Neutron Source Heinz Maier-Leibnitz (FRM II) at TUM initially runs for three years but a further extension is planned. The project is being funded through the Priority Program "Precision Experiments in Particle and Astrophysics with Cold and Ultracold Neutrons" (SPP 1491) of the German Research Foundation (DFG).


Contact and further information:
Professor Dr. Tobias Reich
Institute of Nuclear Chemistry
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone +49 6131 39-25250
e-mail: tobias.reich@uni-mainz.de
http://www.kernchemie.uni-mainz.de/eng/index.php

Professor Dr. Stephan Paul
Physics Department and Excellence Cluster Universe
Technical University of Munich
85748 Garching, GERMANY
e-mail: stephan.paul@tum.de
http://www.e18.ph.tum.de/en/home/

Related links:
http://www.uni-mainz.de/presse/14192_ENG_HTML.php – press release "Ultracold neutrons for science: UCNs will help to solve mysteries of astrophysics", 9 June 2011 ;
http://www.uni-mainz.de/presse/12971_ENG_HTML.php – press release "Physicists at Mainz University generate ultracold neutrons at the TRIGA reactor", 19 December 2008 ;
http://www.uni-mainz.de/presse/14343_ENG_HTML.php – press release "Successful generation of ultracold neutrons", 1 February 2006

Petra Giegerich | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-mainz.de/

Further reports about: JGU Johannes Gutenberg-Universität Mainz Neutron TRIGA TUM UCN neutrons ultracold neutrons

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>