Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TU Vienna develops light transistor

08.07.2013
TU Vienna has managed to turn the oscillation direction of beams of light – simply by applying an electrical current to a special material. This way, a transistor can be built that functions with light instead of electrical current.

Light can oscillate in different directions, as we can see in the 3D cinema: Each lens of the glasses only allows light of a particular oscillation direction to pass through. However, changing the polarization direction of light without a large part of it being lost is difficult.


The oscillation direction of a light wave is changed as it passes through a thin layer of a special material.

The TU Vienna has now managed this feat, using a type of light – terahertz radiation – that is of particular technological importance. An electrical field applied to an ultra-thin layer of material can turn the polarisation of the beam as required. This produces an efficient transistor for light that can be miniaturised and used to build optical computers.

Rotated light – the Faraday effect

Certain materials can rotate the polarization direction of light if a magnetic field is applied to them. This is known as the Faraday effect. Normally, this effect is minutely small, however. Two years ago, Prof. Andrei Pimenov and his team at the Institute of Solid State Physics of TU Vienna, together with a research group from the University of Würzburg, managed to achieve a massive Faraday effect as they passed light through special mercury telluride platelets and applied a magnetic field.

At that time, the effect could only be controlled by an external magnetic coil, which has severe technological disadvantages. "If electro-magnets are used to control the effect, very large currents are required", explains Andrei Pimenov. Now, the turning of terahertz radiation simply by the application of an electrical potential of less than one volt has been achieved. This makes the system much simpler and faster.

It is still a magnetic field that is responsible for the fact that the polarisation is rotated, however, it is no longer the strength of the magnetic field that determines the strength of the effect, but the amount of electrons involved in the process, and this amount can be regulated simply by electrical potential. Hence only a permanent magnet and a voltage source suffice, which is technically comparatively easy to manage.

Terahertz radiation
The light used for the experiments is not visible: it is terahertz radiation with a wavelength of the order of one millimetre. "The frequency of this radiation equates to the clock frequency that the next but one generation of computers may perhaps achieve", explains Pimenov. "The components of today's computers, in which information is passed only in the form of electrical currents, cannot be fundamentally improved. To replace these currents with light would open up a range of new opportunities." It is not only in hypothetical new computers that it's important to be able to control beams of radiation precisely with the newly developed light turning mechanism: terahertz radiation is used today for many purposes, for example for imaging methods in airport security technology.
Optical transistors
If light is passed through a polarisation filter, dependent on the polarisation direction, it is either allowed to pass through or is blocked. The rotation of the beam of light (and thus the electrical potential applied) therefore determines whether a light signal is sent or blocked. "This is the very principle of a transistor", explains Pimenov: "The application of an external voltage determines whether current flows or not, and in our case, the voltage determines whether the light arrives or not." The new invention is therefore the optical equivalent of an electrical transistor.
Further Information:
Prof. Andrei Pimenov
Institute of Solid State Physics
Vienna University of Technology
Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria
T: +43-1-58801-137 23
andrei.pimenov@tuwien.ac.at

Florian Aigner | EurekAlert!
Further information:
http://www.tuwien.ac.at

More articles from Physics and Astronomy:

nachricht LIGO confirms RIT's breakthrough prediction of gravitational waves
12.02.2016 | Rochester Institute of Technology

nachricht Milestone in physics: gravitational waves detected with the laser system from LZH
12.02.2016 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Symposium on Climate Change Adaptation in Africa 2016

12.02.2016 | Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

 
Latest News

LIGO confirms RIT's breakthrough prediction of gravitational waves

12.02.2016 | Physics and Astronomy

Gene switch may repair DNA and prevent cancer

12.02.2016 | Life Sciences

Using 'Pacemakers' in spinal cord injuries

12.02.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>