Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trouble with Sputter? Blame Giant Nanoparticles

26.08.2010
When you tear open a bag of potato chips or pop in a DVD, you're probably putting your hand on sputter deposition. No, don't run for the soap.

Sputter deposition is an industrial process used since the 1970s to spray -- sputter, that is -- thin films onto various backings, like the metallic coating on potato chip bags, the reflective surface on DVDs, or the electronics on computer chips.

Mostly, the process works very well. In a vacuum chamber filled with an inert gas, like argon, high voltage is applied to a magnet. This energizes the argon, which, in turn, bumps particles of, say, tungsten metal from a source near the magnet out into the cloud of gas. Some of these extremely hot, charged tungsten particles zip at high speed through the argon and deposit onto the target, forming a thin film.

But sometimes the coatings peel off or the product bends in on itself and cracks, as if the film was stretched tight before it was applied to the surface. Other times, the films are just too rough. For decades, scientists have been baffled -- and manufacturers frustrated -- about why these problems happen.

Particle pile-up

Now researchers at the University of Vermont and the Argonne National Laboratory near Chicago have an explanation: "it's nanoparticles," says Randy Headrick, professor of physics at UVM, "sticking and pulling together."

The discovery, led by Headrick's graduate student, Lan Zhou, was published August 10 in the journal Physical Review B.

Using high-powered x-rays, the team measured the size of tungsten particles depositing on a target and were amazed. Above a critical pressure in the argon gas (eight one-millionths of an atmosphere), the size suddenly jumped. Instead of single atoms or several-atom molecules -- as would be expected in the high-heat, high-velocity environment of a sputter chamber -- they detected relatively gigantic blobs of hundreds of atoms: what the researchers call a "nanoparticle aggregation."

"It's a condensation, like clouds, like mist," says Headrick, "this is something we really didn't expect."

These nanoparticles pull together and fuse, drawing the film tight as tiny "nano-voids" between particles are eliminated. This can create stress in thin films strong enough to pull electronic wafers into a cup shape or roughness that distorts the delicate coatings of optical lenses.

One nanometer, please

"No one realized that in the gas phase you could produce a particle so large," says Al Macrander, a physicist at Argonne National Laboratory and a co-author on the article. "They're highly energized, so it's counter-intuitive that they would stick -- because of their velocity," he says. But stick they do.

In the sputter deposition chamber, "particles start off with temperatures of around ten thousand degrees," UVM's Randy Headrick explains. But even as they are moving in the gas, they cool slightly and "once they cool," he says, "they want to go back to being a solid."

"This has large implications," Macrander says, "for many industries, not only optics." For his part, the new findings are likely to help accelerate the creation of advanced x-ray lenses that he has been helping to develop.

So far, the efforts to make these lenses have not succeeded since the sputter deposition process has produced coatings that are still too rough with too much tension -- despite using state-of-the-art techniques.

"These lenses are intended to focus x-ray beams on smaller dimensions than have ever been achieved," he said, "down to one nanometer." To make these lenses requires more than a thousand layers of thin film. "Stress builds up and becomes a problem," he says.

The team's new insight into the basic physics of sputter deposition points the way toward a solution, but the equation is complex. "If you want to get real smooth surfaces, you have to deposit at lower argon pressures," says UVM’s Lan Zhou. But at this very low pressure, the particles hit with such velocity that the thin films want to expand, creating the opposite problem by pulling films apart.

"Its still an open question: what do you do to make a film with zero stress and as smooth as possible?" says Headrick.

"At least now we understand what is happening," says Zhou, "so people can try to optimize the film deposition conditions, for structure and roughness."

Hard thought

Still, what are problems in one application might be a benefit in others. "There is a lot more to this finding than lens coatings," says Headrick, "there are many kinds of materials where you want to make nanoparticles, like some kinds of catalytic converters or solar cells. This could be a good way to make nanoparticles cheaply."

But the cost of figuring it out was steep. "This took years for us to understand," says Zhou, with the slightly worn smile that PhD students wear best, "it was hard to think of aggregate particles forming in the middle of a flux."

Joshua Brown | EurekAlert!
Further information:
http://www.uvm.edu
http://www.uvm.edu/~uvmpr/?Page=News&storyID=16927

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>