Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The first non-trivial atom circuit: Progress toward an atom SQUID

01.04.2011
Researchers from the National Institute of Standards and Technology (NIST) and the University of Maryland (UM) have created the first nontrivial "atom circuit," a donut-shaped loop of ultracold gas atoms circulating in a current analogous to a ring of electrons in a superconducting wire.

The circuit is "nontrivial" because it includes a circuit element—an adjustable barrier that controls the flow of atom current to specific allowed values. The newly published* work was done at the Joint Quantum Institute, a NIST/UM collaboration.


Atom circuit: False color images of an "atom circuit" made of an ultracold sodium gas. Red denotes a greater density of atoms and traces the path of circulating atoms around the ring. A laser-based barrier can stop the flow of atoms around the circuit (left); without the barrier the atoms circulate around the ring (right). Credit: JQI/NIST

Ultracold gases, such as the Bose-Einstein condensate of sodium atoms in this experiment, are fluids that exhibit the unusual rules of the quantum world. Atomic quantum fluids show promise for constructing ultraprecise versions of sensors and other devices such as gyroscopes (which stabilize objects and aid in navigation). Super?uid helium circuits have already been used to detect rotation. Superconducting quantum interference devices (SQUIDs) use superconducting electrons in a loop to make highly sensitive measurements of magnetic fields. Researchers are striving to create an ultracold-gas version of a SQUID, which could detect rotation. Combined with ultracold atomic-gas analogs of other electronic devices and circuits, or "atomtronics" that have been envisioned, such as diodes and transistors, this work could set the stage for a new generation of ultracold-gas-based precision sensors.

To make their atom circuit, researchers created a long-lived persistent current—a frictionless flow of particles—in a Bose-Einstein condensate of sodium atoms held by an arrangement of lasers in a so-called optical trap that confines them to a toroidal, or donut, shape. Persistent flow—occurring for a record-high 40 seconds in this experiment—is a hallmark of superfluidity, the fluid analog of superconductivity.

The atom current does not circle the ring at just any velocity, but only at specified values, corresponding in this experiment to just a single quantum of angular momentum. A focused laser beam creates the circuit element—a barrier across one side of the ring. The barrier constitutes a tunable "weak link" that can turn off the current around the loop.

Superflow stops abruptly when the strength of the barrier is sufficiently high. Like water in a pinched garden hose, the atoms speed up in the vicinity of the barrier. But when the velocity reaches a critical value, the atoms encounter resistance to flow (viscosity) and the circulation stops, as there are no external forces to sustain it.

In atomic Bose-Einstein condensates, researchers have previously created Josephson junctions, a thin barrier separating two superfluid regions, in a single atomic trap. SQUIDs require a Josephson junction in a circuit. This present work represents the implementation of a complete atom circuit, containing a superfluid ring of current and a tunable weak link barrier. This is an important step toward realizing an atomic SQUID analog.

* A. Ramanathan, K. C. Wright, S. R. Muniz, M. Zelan, W. T. Hill III, C. J. Lobb, K. Helmerson, W. D. Phillips and G. K. Campbell. Super?ow in a toroidal Bose-Einstein condensate: an atom circuit with a tunable weak link. Physical Review Letters. Published online March 28, 2011.

Ben Stein | EurekAlert!
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>