Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Triple-mode transistors show potential

14.10.2010
Rice researchers introduce graphene-based amplifiers

Rice University research that capitalizes on the wide-ranging capabilities of graphene could lead to circuit applications that are far more compact and versatile than what is now feasible with silicon-based technologies.

Triple-mode, single-transistor amplifiers based on graphene -- the one-atom-thick form of carbon that recently won its discoverers a Nobel Prize -- could become key components in future electronic circuits. The discovery by Rice researchers was reported this week in the online journal ACS Nano.

Graphene is very strong, nearly transparent and conducts electricity very well. But another key property is ambipolarity, graphene's ability to switch between using positive and negative carriers on the fly depending on the input signal. Traditional silicon transistors usually use one or the other type of carrier, which is determined during fabrication.

A three-terminal single-transistor amplifier made of graphene can be changed during operation to any of three modes at any time using carriers that are positive, negative or both, providing opportunities that are not possible with traditional single-transistor architectures, said Kartik Mohanram, an assistant professor of electrical and computer engineering at Rice. He collaborated on the research with Alexander Balandin, a professor of electrical engineering at the University of California, Riverside, and their students Xuebei Yang (at Rice) and Guanxiong Liu (at Riverside).

Mohanram likened the new transistor's abilities to that of a water tap. "Turn it on and the water flows," he said. "Turn it off and the water stops. That's what a traditional transistor does. It's a unipolar device -- it only opens and closes in one direction."

"But if you close a tap too much, it opens again and water flows. That's what ambipolarity is -- current can flow when you open the transistor in either direction about a point of minimum conduction."

That alone means a graphene transistor can be "n-type" (negative) or "p-type" (positive), depending on whether the carrier originates from the source or drain terminals (which are effectively interchangeable). A third function appears when the input from each carrier is equal: The transistor becomes a frequency multiplier. By combining the three modes, the Rice-Riverside team demonstrated such common signaling schemes as phase and frequency shift keying for wireless and audio applications.

"Our work, and that of others, that focuses on the applications of ambipolarity complements efforts to make a better transistor with graphene," Mohanram said. "It promises more functionality." The research demonstrated that a single graphene transistor could potentially replace many in a typical integrated circuit, he said. Graphene's superior material properties and relative compatibility with silicon-based manufacturing should allow for integration of such circuits in the future, he added.

Technological roadblocks need to be overcome, Mohanram said. Such fabrication steps as dielectric deposition and making contacts "wind up disturbing the lattice, scratching it and introducing defects. That immediately degrades its performance (limiting signal gain), so we have to exercise a lot of care in fabrication.

"But the technology will mature, since so many research groups are working hard to address these challenges," he said.

The National Science Foundation and the DARPA-Semiconductor Research Corporation's Focus Center Research Program supported the work.

Read the abstract at http://pubs.acs.org/doi/abs/10.1021/nn1021583.

An image is available for download at: http://www.media.rice.edu/images/media/NEWSRELS/1012_Amplifier.jpg

David Ruth | EurekAlert!
Further information:
http://www.rice.edu

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>