Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trembling hands and molecular handshakes

26.10.2009
A novel protein structure involved in hereditary neurodegeneration

Fragile X tremor/ataxia syndrome (FXTAS) is a recently recognized condition, which is actually one of the most prevalent heritable neurodegenerative diseases. It is assumed that the condition is caused by deficiency for the protein Pur-alpha, which is essential for normal neural function.

Structural studies undertaken by a team under the leadership of Dr. Dierk Niessing of the Helmholtz Zentrum München and the Gene Center at Ludwigs-Maximilians-University (LMU) have now determined the three-dimensional structure of Pur-alpha, and gained insights into the molecular function of the protein. The findings provide a possible basis for the development of an effective therapy for the disease.(PNAS Early Edition, 21. Oktober 2009)

Most FXTAS patients are males, and symptoms of the condition become manifest around the age of 55. As the disease progresses, patients develop tremor in their hands and also show ataxia, i.e. they have difficulty maintaining their balance when they move, and therefore have a tendency to fall. Quite often these deficits are accompanied by cognitive defects and dementia.

The underlying cause of FXTAS is a mutation in the gene for FMRP (Fragile X Mental Retardation Protein). This mutation is found on the X chromosome in one out of 800 men, and involves abnormal expansions of a DNA sequence composed of repeats of the base triplet CGG. Healthy people have between 5 and 54 copies of this sequence, while those who will develop FXTAS are born with between 55 and 200 repeats. Expansion of the triplet sequence beyond 200 copies leads to Fragile X Syndrome (FXS), which is the second most common cause of hereditary mental retardation after Down's syndrome. FXTAS itself is apparently triggered by a lack of the protein Pur-alpha. This protein binds to the CGG sequences in FMR messenger RNAs (mRNA). The excessive numbers of CGG triplets found in the mutant FMRP mRNA essentially bind so much Pur-alpha that insufficient amounts are available for its normal cellular function.

Dr. Niessing's team reports in the online Early Edition of the journal Proceedings of the National Academy of Sciences USA (PNAS) that the Pur-alpha protein itself consists of three copies of a structural unit called the PUR repeat. "The crystal structure of Pur-alpha will make it possible to understand the protein's function in detail, and this could contribute to the development of a therapy for FXTAS", says Dierk Niessing, who leads a junior research group that is jointly funded by the Helmholtz Zentrum München, the Helmholtz Association and LMU's Gene Center. "With the treatment options we have at the moment, we can only alleviate the symptoms but cannot attack the real cause of the disease."

"A PUR repeat looks like a hand: four so-called beta-strands, corresponding to four fingers, form a beta-sheet, and an adjacent alpha-helix resembles a thumb", explains Almut Graebsch, the first author from Niessing's group. Pairs of PUR repeats bind to each other in a particular configuration that is reminiscent of a handshake, forming a functional unit. In addition to X-ray diffraction, the researchers have used a technique called small angle X-ray scattering, which revealed that the Pur-alpha protein forms dimers – two molecules of the protein bind stably to one another. This probably occurs when PUR repeats in separate molecules interact, in a similar way to the repeats within a molecule, to form the handshake structure.

Experiments in animals have shown that the symptoms of FXTAS disappear if extra Pur-alpha is supplied. "Perhaps the condition can be cured if one can find a way of stopping Pur-alpha from binding to long stretches of CGG in mRNA", says Niessing. By mutating the protein, his group has already obtained clues to how Pur-alpha binds to the CGG repeats. The next step is to find out precisely how Pur-alpha binds to RNA. This in turn could suggest ways of preventing the interactions that cause the disease. (HHZM)

The Helmholtz Zentrum München

The Helmholtz Zentrum München is the main institution charged with research on health and the environment in Germany. As the leading center for Environmental Health Sciences, it conducts research on chronic and complex diseases, which result from a combination of environmental factors and individual genetic predisposition. The Center employs some 1680 people. The major facility is located on a 50-hectare research campus in Neuherberg, to the North of Munich. The Helmholtz Zentrum München is part of the largest research organization in Germany, the Helmholtz Association, a consortium of 16 technological and biomedical research centres with a combined staff of 26,500.

Scientists at the Institute for Structural Biology use NMR spectroscopy and X-ray diffraction to determine the three-dimensional structures of biologically relevant proteins and nucleic acids, and to probe their behaviour in aqueous solution. By combining insights from structural analyses with biochemical experiments, it is possible to understand the molecular bases of biological function. Efforts are now underway to optimize NMR so that the technique can be applied to larger proteins and protein complexes (consisting of several subunits).

The Gene Center at LMU Munich

The Gene Center at LMU Munich pursues a combination of interdisciplinary research and teaching in key areas of modern bioscience. Its major goal is to elucidate the mechanisms responsible for cell and organismal function under normal and pathological conditions. The basic approach focuses on gene regulation, but methods from structural biology, molecular cell biology, genetics, developmental biology and virology are all exploited in order to decipher the molecular mechanisms that underpin basic biological processes.

Publication:
"X-ray structure of Pur-alpha reveals a Whirly-like fold and an unusual nucleic-acid binding surface"
Almut Graebsch, Stephane Roche, and Dierk Niessing.
PNAS online, 21 October 2009
Contact:
Dr. Dierk Niessing
Institute for Struktural Biology of the Helmholtz Zentrum München and Gene Center of the LMU
Phone: +49 089 / 2180 - 76962
Fax: +49 89 / 2180 - 99-76962
E-Mail: niessing@lmb.uni-muenchen.de

Dr. Dierk Niessing | EurekAlert!
Further information:
http://www.uni-muenchen.de

More articles from Physics and Astronomy:

nachricht Tune your radio: galaxies sing while forming stars
21.02.2017 | Max-Planck-Institut für Radioastronomie

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>