Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Traveling Faster Than the Speed of Light: A New Idea That Could Make It Happen

13.08.2008
Two Baylor University scientists have come up with a new method to cause a spaceship to effectively travel faster than the speed of light, without breaking the laws of physics.

Dr. Gerald Cleaver, associate professor of physics at Baylor, and Richard Obousy, a Baylor graduate student, theorize that by manipulating the extra spatial dimensions of string theory around a spaceship with an extremely large amount of energy, it would create a “bubble” that could cause the ship to travel faster than the speed of light.

To create this bubble, the Baylor physicists believe manipulating the 10th spatial dimension would alter the dark energy in three large spatial dimensions: height, width and length. Cleaver said positive dark energy is currently responsible for speeding up the expansion rate of our universe as time moves on, just like it did after the Big Bang, when the universe expanded much faster than the speed of light for a very brief time.

“Think of it like a surfer riding a wave,” said Cleaver, who co-authored the paper with Obousy about the new method. “The ship would be pushed by the spatial bubble and the bubble would be traveling faster than the speed of light.”

The method is based on the Alcubierre drive, which proposes expanding the fabric of space behind a ship and shrinking space-time in front of the ship. The ship would not actually move, rather the ship would sit in a bubble between the expanding and shrinking space-time dimensions. Since space would move around the ship, the theory does not violate Einstein’s Theory of Relativity, which states that it would take an infinite amount of energy to accelerate a massive object to the speed of light.

String theory suggests the universe is made up of multiple dimensions. Height, width and length are three dimensions, and time is the fourth dimension. String theorists use to believe that there were a total of 10 dimensions, with six other dimensions that we can not yet identify because of their incredibly small size. A new theory, called M-theory, takes string theory one step farther and states that the “strings” that all things are made of actually vibrate in an additional spatial dimensional, which is called the 10th dimension. It is by changing the size of this 10th spatial dimension that Baylor researchers believe could alter the strength of the dark energy in such a manner to propel a ship faster than the speed of light.

The Baylor physicists estimate that the amount of energy needed to influence the extra dimension is equivalent to the entire mass of Jupiter being converted into pure energy for a ship measuring roughly 10 meters by 10 meters by 10 meters.

“That is an enormous amount of energy,” Cleaver said. “We are still a very long ways off before we could create something to harness that type of energy.”

For more information, contact Dr. Cleaver at (254) 710-2283.

Dr. Cleaver | Newswise Science News
Further information:
http://www.baylor.edu/

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>