Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Traveling Faster Than the Speed of Light: A New Idea That Could Make It Happen

13.08.2008
Two Baylor University scientists have come up with a new method to cause a spaceship to effectively travel faster than the speed of light, without breaking the laws of physics.

Dr. Gerald Cleaver, associate professor of physics at Baylor, and Richard Obousy, a Baylor graduate student, theorize that by manipulating the extra spatial dimensions of string theory around a spaceship with an extremely large amount of energy, it would create a “bubble” that could cause the ship to travel faster than the speed of light.

To create this bubble, the Baylor physicists believe manipulating the 10th spatial dimension would alter the dark energy in three large spatial dimensions: height, width and length. Cleaver said positive dark energy is currently responsible for speeding up the expansion rate of our universe as time moves on, just like it did after the Big Bang, when the universe expanded much faster than the speed of light for a very brief time.

“Think of it like a surfer riding a wave,” said Cleaver, who co-authored the paper with Obousy about the new method. “The ship would be pushed by the spatial bubble and the bubble would be traveling faster than the speed of light.”

The method is based on the Alcubierre drive, which proposes expanding the fabric of space behind a ship and shrinking space-time in front of the ship. The ship would not actually move, rather the ship would sit in a bubble between the expanding and shrinking space-time dimensions. Since space would move around the ship, the theory does not violate Einstein’s Theory of Relativity, which states that it would take an infinite amount of energy to accelerate a massive object to the speed of light.

String theory suggests the universe is made up of multiple dimensions. Height, width and length are three dimensions, and time is the fourth dimension. String theorists use to believe that there were a total of 10 dimensions, with six other dimensions that we can not yet identify because of their incredibly small size. A new theory, called M-theory, takes string theory one step farther and states that the “strings” that all things are made of actually vibrate in an additional spatial dimensional, which is called the 10th dimension. It is by changing the size of this 10th spatial dimension that Baylor researchers believe could alter the strength of the dark energy in such a manner to propel a ship faster than the speed of light.

The Baylor physicists estimate that the amount of energy needed to influence the extra dimension is equivalent to the entire mass of Jupiter being converted into pure energy for a ship measuring roughly 10 meters by 10 meters by 10 meters.

“That is an enormous amount of energy,” Cleaver said. “We are still a very long ways off before we could create something to harness that type of energy.”

For more information, contact Dr. Cleaver at (254) 710-2283.

Dr. Cleaver | Newswise Science News
Further information:
http://www.baylor.edu/

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017 | Materials Sciences

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>