Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New transformation of Neutrinos observed

19.07.2013
After first indications it has now been firmly established that there is a new type transformation among neutrinos – the elusive elementary particles, which are so important for the understanding of the Universe. A team of particle physicists from the University of Bern participated to the discovery in Japan.

The picture of the world of the inscrutable neutrinos is getting clearer: today at the European Physical Society meeting in Stockholm, the international T2K collaboration announced the definitive observation of muon neutrino to electron neutrino transformation.


The ND280 detector used to inspect the neutrino beam near the production point at J-PARC. The iron yoke (red) of the large magnet can be seen, which encloses the actual detector systems. The detector is located 17 meters underground and measures 7.6m x 5.6m x 6.1m. It weights about 1000 tons.
M. Nirkko, University of Bern

In 2011 the collaboration, which includes physicists from the «Albert Einstein Center for Fundamental Physics» (AEC) of the University of Bern, announced the first indication of this process. Now this transformation is firmly established with a significance of better than 1 in 16 trillion. This is as likely as getting six correct digits in the Swiss Lottery twice in a row.

Muon-neutrinos sent and electron-neutrinos arrived

In the T2K experiment in Japan, a muon neutrino beam is produced in the Japan Proton Accelerator Research Complex, called J-PARC, located in Tokai village. The beam is aimed at the gigantic Super-Kamiokande underground detector in Kamioka, near the west coast of Japan, 295 km away. An analysis of the data from Super-Kamiokande reveals that there are more electron neutrinos in the beam from J-PARC than at there were at the start of the journey, showing that a transformation took place.

This the first time electron neutrinos were unequivocally observed in a beam of muon neutrinos. Oscillations from muon neutrinos to tau neutrinos were earlier measured by the international OPERA collaboration, where also the University of Bern contributed.

University of Bern checks particles at the production point

In order to perform such a measurement one needs to precisely study the properties of the neutrino beam at the production point. This includes the knowledge of the energy of the neutrinos, the number of electron neutrinos before the transformation and a series of additional parameters. A detector complex in Tokai was built and is operated to gain this information. The researchers from the University of Bern installed and calibrated a huge magnet, which is used to identify the particles and encloses a set of devices at 280m from the production point.

The group of Prof. Antonio Ereditato of the AEC works on the largest of these devices and the analysis of the recorded data. Besides the measurements on the neutrino beam related to the oscillation physics also the interaction of neutrinos with matter is studied in detail. This is also important for many other experiments in neutrino physics beyond the T2K experiment.

«The observation of neutrino oscillations with an appearance experiment is an important milestone in the full understanding of particle physics and cosmology in the early phase of the Universe», says Antonio Ereditato, head of the Bern group. One of the most intriguing unresolved puzzles in science is the fact that more matter than anti-matter survived after the Big Bang. Such an asymmetry was observed for quarks, however, this effect is not sufficient to resolve the puzzle.

The neutrino oscillation observed by T2K is a further step towards a fundamental understanding of the asymmetry between matter and antimatter. Further oscillation measurements could soon reveal additional information to improve the understanding of the creation of the universe. The results have wide implications for physics, according to Ereditato «the measurement of oscillations among different type of neutrinos show that the Standard Model of particle physics will have to be extended.»

The T2K-Experiment in Japan

In the T2K experiment a high energy muon neutrino beam is produced in Tokai on the east coast of Japan and aimed at the giant Super-Kamiokande detector in just under 300 km distance in the Japanese mountains. The detector measures the signals of incoming neutrinos that interact with it. «T2K» stands for «Tokai to Kamiokande». Already in 280 meter distance from the production point the beam is inspected with the Near Detector 280 (ND280). The Bern group led by Prof. Antonio Ereditato contributed significantly to the installation and analysis of the data of ND280. Further large neutrino experiments with participation from Bern are OPERA, EXO-200 and MicroBooNE.

Nathalie Matter | Universität Bern
Further information:
http://www.unibe.ch

More articles from Physics and Astronomy:

nachricht Tiny lasers from a gallery of whispers
20.09.2017 | American Institute of Physics

nachricht New quantum phenomena in graphene superlattices
19.09.2017 | Graphene Flagship

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>