Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New transformation of Neutrinos observed

19.07.2013
After first indications it has now been firmly established that there is a new type transformation among neutrinos – the elusive elementary particles, which are so important for the understanding of the Universe. A team of particle physicists from the University of Bern participated to the discovery in Japan.

The picture of the world of the inscrutable neutrinos is getting clearer: today at the European Physical Society meeting in Stockholm, the international T2K collaboration announced the definitive observation of muon neutrino to electron neutrino transformation.


The ND280 detector used to inspect the neutrino beam near the production point at J-PARC. The iron yoke (red) of the large magnet can be seen, which encloses the actual detector systems. The detector is located 17 meters underground and measures 7.6m x 5.6m x 6.1m. It weights about 1000 tons.
M. Nirkko, University of Bern

In 2011 the collaboration, which includes physicists from the «Albert Einstein Center for Fundamental Physics» (AEC) of the University of Bern, announced the first indication of this process. Now this transformation is firmly established with a significance of better than 1 in 16 trillion. This is as likely as getting six correct digits in the Swiss Lottery twice in a row.

Muon-neutrinos sent and electron-neutrinos arrived

In the T2K experiment in Japan, a muon neutrino beam is produced in the Japan Proton Accelerator Research Complex, called J-PARC, located in Tokai village. The beam is aimed at the gigantic Super-Kamiokande underground detector in Kamioka, near the west coast of Japan, 295 km away. An analysis of the data from Super-Kamiokande reveals that there are more electron neutrinos in the beam from J-PARC than at there were at the start of the journey, showing that a transformation took place.

This the first time electron neutrinos were unequivocally observed in a beam of muon neutrinos. Oscillations from muon neutrinos to tau neutrinos were earlier measured by the international OPERA collaboration, where also the University of Bern contributed.

University of Bern checks particles at the production point

In order to perform such a measurement one needs to precisely study the properties of the neutrino beam at the production point. This includes the knowledge of the energy of the neutrinos, the number of electron neutrinos before the transformation and a series of additional parameters. A detector complex in Tokai was built and is operated to gain this information. The researchers from the University of Bern installed and calibrated a huge magnet, which is used to identify the particles and encloses a set of devices at 280m from the production point.

The group of Prof. Antonio Ereditato of the AEC works on the largest of these devices and the analysis of the recorded data. Besides the measurements on the neutrino beam related to the oscillation physics also the interaction of neutrinos with matter is studied in detail. This is also important for many other experiments in neutrino physics beyond the T2K experiment.

«The observation of neutrino oscillations with an appearance experiment is an important milestone in the full understanding of particle physics and cosmology in the early phase of the Universe», says Antonio Ereditato, head of the Bern group. One of the most intriguing unresolved puzzles in science is the fact that more matter than anti-matter survived after the Big Bang. Such an asymmetry was observed for quarks, however, this effect is not sufficient to resolve the puzzle.

The neutrino oscillation observed by T2K is a further step towards a fundamental understanding of the asymmetry between matter and antimatter. Further oscillation measurements could soon reveal additional information to improve the understanding of the creation of the universe. The results have wide implications for physics, according to Ereditato «the measurement of oscillations among different type of neutrinos show that the Standard Model of particle physics will have to be extended.»

The T2K-Experiment in Japan

In the T2K experiment a high energy muon neutrino beam is produced in Tokai on the east coast of Japan and aimed at the giant Super-Kamiokande detector in just under 300 km distance in the Japanese mountains. The detector measures the signals of incoming neutrinos that interact with it. «T2K» stands for «Tokai to Kamiokande». Already in 280 meter distance from the production point the beam is inspected with the Near Detector 280 (ND280). The Bern group led by Prof. Antonio Ereditato contributed significantly to the installation and analysis of the data of ND280. Further large neutrino experiments with participation from Bern are OPERA, EXO-200 and MicroBooNE.

Nathalie Matter | Universität Bern
Further information:
http://www.unibe.ch

More articles from Physics and Astronomy:

nachricht Taking a spin on plasma space tornadoes with NASA observations
20.11.2017 | NASA/Goddard Space Flight Center

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>