Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tracking the origins of speedy space particles

01.02.2011
NASA's Time History of Events and Macroscale Interaction during Substorms (THEMIS) spacecraft combined with computer models have helped track the origin of the energetic particles in Earth's magnetic atmosphere that appear during a kind of space weather called a substorm. Understanding the source of such particles and how they are shuttled through Earth's atmosphere is crucial to better understanding the Sun's complex space weather system and thus protect satellites or even humans in space.

The results show that these speedy electrons gain extra energy from changing magnetic fields far from the origin of the substorm that causes them. THEMIS, which consists of five orbiting satellites, helped provide these insights when three of the spacecraft traveled through a large substorm on February 15, 2008.

This allowed scientists to track changes in particle energy over a large distance. The observations were consistent with numerical models showing an increase in energy due to changing magnetic fields, a process known as betatron acceleration.

"The origin of fast electrons in substorms has been a puzzle," says Maha Ashour-Abdalla, the lead author of a Nature Physics paper that appeared online on January 30, 2011 on the subject and a physicist at the University of California, Los Angeles. "It hasn't been clear until now if they got their burst of speed in the middle of the storm, or from some place further away."

Substorms originate opposite the sun on Earth's "night side," at a point about a third of the distance to the moon. At this point in space, energy and particles from the solar wind store up over time. This is also a point where the more orderly field lines near Earth -- where they look like two giant ears on either side of the globe, a shape known as a dipole since the lines bow down to touch Earth at the two poles – can distort into long lines and sometimes pull apart and "reconnect." During reconnection, the stored energy is released in explosions that send particles out in all directions. But reconnection is a magnetic phenomenon and scientists don't know the exact mechanism that creates speeding particles from that phenomenon.

"For thirty years, one of the questions about the magnetic environment around Earth has been, 'how do magnetic fields give rise to moving, energetic particles?'" says NASA scientist Melvyn Goldstein, chief of the Geospace Physics Laboratory at NASA's Goddard Space Flight Center in Greenbelt, Md., and another author on the paper. "We need to know such things to help plan the next generation of reconnection research instruments such as the Magnetospheric MultiScale mission (MMS) due to launch in 2014. MMS needs to look in the right place and for the correct signatures of particle energization."

In the early 1980s, scientists hypothesized that the quick, high-energy particles might get their speed from rapidly changing magnetic fields. Changing magnetic fields can cause electrons to zoom along a corkscrew path by the betatron effect.

Indeed, electrons moving toward Earth from a substorm will naturally cross a host of changing magnetic fields as those long, stretched field lines far away from Earth relax back to the more familiar dipole field lines closer to Earth, a process called dipolarization. Betatron acceleration causes the particles to gain energy and speed much farther away from the initial reconnection site. But in the absence of observations that could simultaneously measure data near the reconnection site and closer to Earth, the hypothesis was hard to prove or contradict.

THEMIS, however, was specifically designed to study the formation of substorms. It launched with five spacecraft, which can be spread out over some 44,000 miles – a perfect tool for examining different areas of Earth's magnetic environment at the same time. Near midnight, on February 15, 2008, three of the satellites moving through Earth's magnetic tail, about 36,000 miles from Earth, traveled through a large substorm.

"I looked at the THEMIS data for that substorm," says Ashour-Abdalla, "and saw there was a direct correlation of the increased particle energy at the origin with the region of dipolarization nearer to Earth."

To examine the data, Ashour-Abdalla and a team of researchers from UCLA, Nanchang University in China, NASA Goddard Space Flight Center, and the University of Maryland, Baltimore, used their expertise with computer modeling to simulate the complex dynamics that occur in space. The team began with spacecraft data from an ESA mission called Cluster that was in the solar wind at the time of the substorm. Using these observations of the solar environment, they modeled large scale electric and magnetic fields in space around Earth. Then they modeled the future fate of the various particles observed.

When the team looked at their models they saw that electrons near the reconnection sites didn't gain much energy. But as they looked closer to Earth, where the THEMIS satellites were located, their model showed particles that had some ten times as much energy – just as THEMIS had in fact observed.

This is consistent with the betatron acceleration model. The electrons gain a small amount of energy from the reconnection and then travel toward Earth, crossing many changing magnetic field lines. These fields produce betatronic acceleration just as Kivelson predicted in the early 1980s, speeding the electrons up substantially.

"This research shows the great science that can be accomplished when modelers, theorists and observationalists join forces," says astrophysicist Larry Kepko, who is a deputy project scientist for the THEMIS mission at Goddard. "THEMIS continues to yield critical insights into the dynamic processes that produce the space weather that affects Earth."

Launched in 2007, THEMIS was NASA's first five-satellite mission launched aboard a single rocket. The unique constellation of satellites provided scientists with data to help resolve the mystery of how Earth's magnetosphere stores and releases energy from the sun by triggering geomagnetic substorms. Two of the satellites have been renamed ARTEMIS and are in the process of moving to a new orbit around the moon. They are due to reach their final lunar orbit in July 2011. The three remaining THEMIS satellites continue to study substorms.

THEMIS is managed by NASA's Goddard Space Flight Center for the agency's Science Mission Directorate. The Space Sciences Laboratory at the University of California, Berkeley, is responsible for project management, space and ground-based instruments, mission integration, mission operations and science. ATK (formerly Swales Aerospace), Beltsville, Md., built the THEMIS probes. THEMIS is an international project conducted in partnership with Germany, France, Austria, and Canada.

Susan Hendrix | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Physics and Astronomy:

nachricht NASA's SDO sees partial eclipse in space
29.05.2017 | NASA/Goddard Space Flight Center

nachricht Strathclyde-led research develops world's highest gain high-power laser amplifier
29.05.2017 | University of Strathclyde

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>