Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Traces of Recent Water on Mars

25.04.2014

New research has shown that there was liquid water on Mars as recently as 200,000 years ago. The results have been published in the prestigious international scientific journal ICARUS.

“We have discovered a very young crater in the southern mid-latitudes of Mars that shows evidence of liquid water in Mars’ recent past” says Andreas Johnsson at the University of Gothenburg.


Debris flows on Mars

NASA/JPL/UofA for HiRISE

The southern hemisphere of Mars is home to a crater that contains very well-preserved gullies and debris flow deposits. The geomorphological attributes of these landforms provide evidence that they were formed by the action of liquid water in geologically recent time.

Evidence of liquid water
When sediment on a slope becomes saturated with water, the mixture may become too heavy to remain in place, leading to a flow of debris and water as a single-phase unit. This is called a debris flow. Debris flows on Earth often cause significant material destruction and even human casualties, when they occur in built-up areas. During a debris flow, a mixture of stones, gravel, clay and water moves rapidly down a slope. When the sediment subsequently stops, it displays characteristic surface features such as lobate deposits and paired levees along flow channels.

It is these landforms that Andreas Johnsson has identified on Mars. The research group has been able to compare the landforms on Mars with known debris flows on Svalbard with the aid of aerial photography and field studies. The debris flows on Mars provide evidence that liquid water has been present in the region.
“Our fieldwork on Svalbard confirmed our interpretation of the Martian deposits. What surprised us was that the crater in which these debris flows have formed is so young,” says Andreas Johnsson of the Department of Earth Sciences, University of Gothenburg.

After the ice age
Crater statistics allowed Andreas Johnsson and his co-authors to determine that the age of the crater to be approximately 200,000 years. This means that the crater was formed long after the most recent proposed ice age on Mars, which ended around 400,000 years ago.


“Gullies are common on Mars, but the ones which have been studied previously are older, and the sediments where they have formed are associated with the most recent ice age. Our study crater on Mars is far too young to have been influenced by the conditions that were prevalent then. This suggests that the meltwater-related processes that formed these deposits have been exceptionally effective also in more recent times,” says Andreas Johnsson, principal author of the article.

Impact in wet ground
The study crater is situated in the mid-latitudes of Mars’ southern hemisphere, superposed on what is known as the rampart ejecta of a nearby larger crater. A rampart ejecta display a “flowerlike” form around the host crater, and scientists have interpreted this as being the result of an impact in wet or ice-rich ground.

“My first thought was that the water that formed these debris flows had come from preserved ice within the rampart ejecta. But when we looked more closely, we didn’t find any structures such as faults or fractures in the crater that could have acted as conduits for the meltwater. It is more likely that the water has come from melting snow packs, when the conditions were favorable for snow formation. This is possible, since the orbital axis of Mars was more tilted in the past than it is today,” says Andreas Johnsson.

Contact:
Andreas Johnsson, Department of Earth Sciences, University of Gothenburg
Tel.: +46 31 786 2943, Mobile: +46 72 520 5088, e-mail: andreasj@gvc.gu.se

Weitere Informationen:

http://www.sciencedirect.com/science/article/pii/S0019103514001225

Ulrika Lundin | idw - Informationsdienst Wissenschaft

Further reports about: Earth Mars Sciences Water debris flows on Mars destruction meltwater structures

More articles from Physics and Astronomy:

nachricht Streamlining accelerated computing for industry
24.08.2016 | DOE/Oak Ridge National Laboratory

nachricht Lehigh engineer discovers a high-speed nano-avalanche
24.08.2016 | Lehigh University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

Towards the connected, automated and electrified automobiles: AMAA conference in Brussels

02.08.2016 | Event News

 
Latest News

New Ideas for the Shipping Industry

24.08.2016 | Event News

Lehigh engineer discovers a high-speed nano-avalanche

24.08.2016 | Physics and Astronomy

Streamlining accelerated computing for industry

24.08.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>