Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

To Touch the Microcosmos

18.09.2013
New Haptic Microscope Technique Allows Researchers to "Feel" Microworld

What if you could reach through a microscope to touch and feel the microscopic structures under the lens? In a breakthrough that may usher in a new era in the exploration of the worlds that are a million times smaller than human beings, researchers at Université Pierre et Marie Curie in France have unveiled a new technique that allows microscope users to manipulate samples using a technology known as "haptic optical tweezers."


Pacore/UPMC

Conceptual representation of a highly nimble micromanipulation experimental setup. Cells can be explored with advanced laser trapped microtools that extend the operator's sense of touch thanks to a specifically designed haptic teleoperated optical tweezers.

Featured in the journal Review of Scientific Instruments, which is produced by AIP Publishing, the new technique allows users to explore the microworld by sensing and exerting piconewton-scale forces with trapped microspheres with the haptic optical tweezers, allowing improved dexterity of micromanipulation and micro-assembly.

"The initial results obtained are promising and demonstrate that optical tweezers have a significant potential for haptic exploration of the microworld," said Cecile Pacoret, a co-author of the study. "Haptic optical tweezers will become an invaluable tool for force feedback micromanipulation of biological samples and nano- and microassembly parts."

One of the challenges in developing this technique was to sense and magnify piconewton-scale forces enough to enable human operators to perceive interactions that they have never experienced before, such as adhesion phenomena, extremely low inertia, and high frequency dynamics of extremely small objects, like the Brownian motion. The design of optical tweezers for high quality touch-based feedback is challenging, given the requirements for very high sensitivity and dynamic stability.

This research required a mix of different experimental techniques and theoretical knowledge. Labs at the Institut des Systèmes Intelligents et de Robotique possessed expertise in both microrobotics and in haptics which were needed but the research team, as the project progressed, realized that they needed additional expertise in optics and vision, which was available at the university. "This project would not have been possible without this multidisciplinary environment and additional collaboration of the international optical tweezers community," states Dr. Pacoret. "The high level of interdisciplinary cooperation is what made this project unique, and contributed to its success."

The ability to use touch as a tool to allow exploration, diagnosis and assembly of widespread types of elements from sensors, microsystems to biomedical elements, including cells, bacteria, viruses, and proteins is a real advance for laboratories. These objects are fragile, and their dimensions make them difficult to see under microscope. If this tool can restore the sense of touch under microscopic operation, it will help not only efficiency but also expand scientific creativity, said Dr. Pacoret, adding that she and her team are excited about the possibilities.

"This tool will offer a new degree of freedom and accessibility to researchers, providing, for example, new versatility for the study and micromanipulation of cells," she said.

The article, "A review of haptic optical tweezers for an interactive microworld exploration" by Cécile Pacoret and Stéphane Régnier appears in the journal Review of Scientific Instruments. See: http://dx.doi.org/10.1063/1.4818912

ABOUT THE JOURNAL
Review of Scientific Instruments publishes original research and review articles on instruments in physics, chemistry, and the life sciences. The journal also includes sections on new instruments and new materials. See: http://rsi.aip.org

Jason Socrates Bardi | Newswise
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Exploring the mysteries of supercooled water
01.03.2017 | American Institute of Physics

nachricht Optical generation of ultrasound via photoacoustic effect
01.03.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>