Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tossing a coin in the microcosm

13.07.2009
Bonn physicists take first step towards super-fast search algorithms for quantum computers

When you toss a coin, you either get heads or tails. By contrast, things are not so definite at the microcosmic level. An atomic 'coin' can display a superposition of heads and tails when it has been thrown.

However, this only happens if you do not look at the coin. If you do, it decides in favour of one of the two states. If you leave the decision where a quantum particle should go to a coin like this, you get unusual effects. For the first time, physicists at the University of Bonn have demonstrated these effects in an experiment with caesium. Their research will be published in the next issue of the scientific journal Science.

Let's assume we carried out the following experiment: we put a coin in the hand of a test person. We'll simply call this person Hans. Hans's task is now to toss the coin several times. Whenever the coin turns up 'heads', his task is to take a step to the right. By contrast, if it turns up 'tails', he takes a step to the left. After 10 throws we look where Hans is standing. Probably he won't have moved too far from his initial position, as 'heads' and 'tails' turn up more or less equally often. In order to walk 10 paces to the right, Hans would have to get 10 'heads' successively. And that tends not happen that often.

Now, we assume that Hans is a very patient person. He is so patient that he does this experiment 1000 times successively. After each go, we record his position. When at the end we display this result as a graph, we get a typical bell curve. Hans very often ends up somewhere close to his starting positions after 10 throws. By contrast, we seldom find him far to the left or right.

The experiment is called a 'random walk'. The phenomenon can be found in many areas of modern science, e.g. as Brownian motion. In the world of quantum physics, there is an analogy with intriguing new properties, the 'quantum walk'. Up to now, this was a more or less a theoretical construct, but physicists at the University of Bonn have now actually carried out this kind of 'quantum walk'.

A single caesium atom held in a kind of tweezers composed of laser beams served as a random walker and coin at the same time. Atoms can adopt different quantum mechanical states, similar to head and tails of a coin facing upwards. Yet at the microcosmic level everything is a little more complicated. This is because quantum particles can exist in a superposition of different states. Basically, in that case 'a bit of heads' and 'a bit of tails' are facing upwards. Physicists also call this superposition.

Using two conveyor belts made of laser beams, the Bonn physicists pulled their caesium atom in two opposite directions, the 'heads' part to the right, the 'tails' part to the left. 'This way we were able to move both states apart by fractions of a thousandth of a millimetre,' Dr. Artur Widera from the Bonn Institute of Applied Physics explains. After that, the scientists 'threw the dice once more' and put each of both components into a superposition of heads and tails again.

After several steps of this 'quantum walk' a caesium atom like this that has been stretched apart is basically everywhere. Only when you measure its position does it 'decide' at which position of the 'catwalk' it wants to turn up. The probability of its position is predominantly determined by a second effect of quantum mechanics. This is due to two parts of the atom being able to reinforce themselves or annihilate themselves. As in the case of light physicists call this interference.

As in the example of Hans the coin thrower, you can now carry out this 'quantum walk' many times. You then also get a curve which reflects the atom's probability of presence. And that is precisely what the physicists from Bonn measured. 'Our curve is clearly different from the results obtained in classical random walks. It does not have its maximum at the centre, but at the edges,' Artur Widera's colleague Michal Karski points out. 'This is exactly what we expect from theoretical considerations and what makes the quantum walk so attractive for applications.' For comparison the scientists destroyed the quantum mechanical superposition after every single 'throw of the coin'. Then the 'quantum walk' becomes a 'random walk', and the caesium atom behaves like Hans. 'And that is exactly the effect we see,' Michal Karski says.

Professor Dieter Meschede's group has been working on the development of so-called quantum computers now for many years. With the 'quantum walk' the team has now achieved a further seminal step on this path. 'With the effect we have demonstrated, entirely new algorithms can be implemented,' Artur Widera explains. Search processes are one example. Today, if you want to trace a single one in a row of zeros, you have to check all the digits individually. The time taken therefore increases linearly with the number of digits. By contrast, using the 'quantum walk' algorithm the random walker can search in many different places simultaneously. The search for the proverbial needle in a haystack would thus be greatly speeded up.

Contact:
Dr. Artur Widera
Institute of Applied Physics at the University of Bonn
Telephone: +49 (0)228-733471; email: widera@uni-bonn.de
Website: http://agmeschede.iap.uni-bonn.de/
Michal Karski
Telephone: +49 (0)228 73-3489; email: karski@uni-bonn.de

Dr. Artur Widera | EurekAlert!
Further information:
http://www.uni-bonn.de

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>