Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Topological Matter in Optical Lattices

30.11.2011
Atoms trapped by laser light have become excellent platforms for simulating solid state systems. These systems are also a playground for exploring quantum matter and even uncovering new phenomena not yet seen in nature.

Researchers at the Joint Quantum Institute* have shown that an optical lattice system exhibits a never-before-seen quantum state called a topological semimetal. The semimetal, which debuts in this week’s Advance Online Publication for the journal Nature Physics (DOI:10.1038/NPHYS2134}, can undergo a new type of phase transition to a topological insulator.

Topological insulators are one of the hottest topics in condensed matter research because of their dual-personality. They are insulators throughout the bulk of the material but are conductors along the edges. Harnessing the underlying phenomena, known as quantum hall physics, is important for developing new types of electronics and quantum information.

Scientists can create this unusual behavior in certain two-dimensional materials--such as a layer of electrons at the interface between two semiconductors-- by employing extremely large magnetic fields. What makes topological insulators special is their ability to exhibit this physics without external magnets.

JQI postdoctoral fellow Kai Sun explains, “Magnetic fields and lattices have nothing to do with topology. If a particular quantum hall state is topological matter, then I should be able to create it in different ways just by constructing the right topology.”

While experiments using these new materials have made great advances, hurdles such as achieving the necessary sample purity, remain. Additionally, real-time control over experimental conditions can be quite difficult and in some cases, not possible.

In the paper, the team proposes an atom-optical lattice system as the ideal test bed. Ultracold gases offer versatility for studying topological matter [see Topology inset] because a single apparatus can be used for repeated experiments. Here, researchers are able to alter the effective material through adjusting laser power.

Kai Sun explains that these advantages motivated the team to “design a system to realize topological state that has not been seen in condensed matter systems.”

An ultracold gas may not sound like a solid, but under certain conditions, this unusual quantum matter behaves just like a crystal made in nature. Neutral atoms trapped by a checkerboard of laser light are analogous to electrons in a crystalline solid. The light intensity determines the mobility of the atom gas around the lattice. If the atoms do not interact with each other, an energy band structure emerges that represents the semimetal. This semimetal has special properties that allow it to transform into topological insulator when the atoms begin to interact.**

What is a semimetal?

Condensed matter physicists classify materials according to their conductivity: insulators and metals. This property is related to the ability for electrons to leave their parent atoms and become mobile in a material.

In a single atom, electrons are restricted to certain energy levels. When many atoms form a solid, the individual energy levels mesh together and a new energy spectrum arises for the sea of electrons in a material. This is called a material’s band structure, where bands and gaps represent allowed and forbidden electron energies, respectively.

A valence band encompasses all the allowed energies if a solid were at absolute zero temperature. Electrons fill the valence band and are relatively localized to their parent atoms in the solid. Above the valence band is a conduction band, a zone that can be occupied but only if the electron somehow gains enough energy to overcome the forbidden gap region, becoming mobile.

So what makes a material an electrical conductor, or metal? Insulators have a gap between this conduction zone and valence band that exceeds the energy of the electrons. A well-known subset of insulators, called semiconductors, has a gap small enough that they can only conduct under certain conditions. Metals have no gap, so they are naturally conductive. This topological semimetal has no gap, but only at a small point in the energy spectrum. [see Figure 1]

Starting with the semimetal, these researchers show that allowing the particles to interact disrupts the system and forces a phase transition. Previously studied topological insulators are the result of single particles interacting with a type of internal magnetic field (called spin-orbit coupling).

W. Vincent Liu, co-author and professor at University Pittsburgh, explains this key feature, "A most exciting aspect of this research is that we seem to have found a first example of optical lattice gases that can reveal a quantum Hall-like topological state without needing an external magnetic field or spin-orbital coupling. Instead it is due to the effects of internal many-body interactions."

The team found that upon adding these interactions the particles spontaneously began to rotate [see Figure 2/animation]. Normally, lasers can generate rotation, either by stirring the sample or engineering effective magnetic fields. The proposal here offers not only novel states, but the spontaneously generated rotation may be a complementary experimental technique.

The proposed experiment uses established atomic physics techniques. Combining these ingredients may prove tricky, but would certainly open new possibilities for studying condensed matter physics.

Note: Hi-res images available upon request. Visit http://jqi.umd.edu/news/289-topological-matter-in-optical-lattices.html to see.

*The JQI researchers are also affiliated with the Condensed Matter Theory Center at UMD. They collaborated with many groups over these three publications. Please see individual publications for all author affiliations.

**The research results described here were presented across three publications:

1. “Topological semimetal in a fermionic optical lattice,” Kai Sun, W. Vincent Liu, Andreas Hemmerich, and S. Das Sarma, Nature Physics, DOI:10.1038/NPHYS2134 (2011)
2. “Fractional quantum Hall effect in the absence of Landau levels,” D.N. Sheng, Zheng-Cheng Gu, Kai Sun, and L. Sheng, Nature Communications, 2, 389, (2011)
3. “Nearly Flatbands with Nontrivial Topology,” Kai Sun, Zheng-Cheng Gu, Hosho Katsura, and S. Das Sarma, Physical Review Letters, 106, 236803, (2011)

[Accompanying Physics Viewpoint]

Media contacts at Joint Quantum Institute:
Emily Edwards, 301-405-2291, eedwards@umd.edu
Phillip F. Schewe, 301-405-0989, pschewe@umd.edu
Research Contacts:
Kai Sun Kai Sun kaisun@umd.edu
Sankar Das Sarma dassarma@umd.edu

Emily Edwards | Newswise Science News
Further information:
http://www.umd.edu

More articles from Physics and Astronomy:

nachricht Pulses of electrons manipulate nanomagnets and store information
21.07.2017 | American Institute of Physics

nachricht Vortex photons from electrons in circular motion
21.07.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>