Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Topological Matter in Optical Lattices

Atoms trapped by laser light have become excellent platforms for simulating solid state systems. These systems are also a playground for exploring quantum matter and even uncovering new phenomena not yet seen in nature.

Researchers at the Joint Quantum Institute* have shown that an optical lattice system exhibits a never-before-seen quantum state called a topological semimetal. The semimetal, which debuts in this week’s Advance Online Publication for the journal Nature Physics (DOI:10.1038/NPHYS2134}, can undergo a new type of phase transition to a topological insulator.

Topological insulators are one of the hottest topics in condensed matter research because of their dual-personality. They are insulators throughout the bulk of the material but are conductors along the edges. Harnessing the underlying phenomena, known as quantum hall physics, is important for developing new types of electronics and quantum information.

Scientists can create this unusual behavior in certain two-dimensional materials--such as a layer of electrons at the interface between two semiconductors-- by employing extremely large magnetic fields. What makes topological insulators special is their ability to exhibit this physics without external magnets.

JQI postdoctoral fellow Kai Sun explains, “Magnetic fields and lattices have nothing to do with topology. If a particular quantum hall state is topological matter, then I should be able to create it in different ways just by constructing the right topology.”

While experiments using these new materials have made great advances, hurdles such as achieving the necessary sample purity, remain. Additionally, real-time control over experimental conditions can be quite difficult and in some cases, not possible.

In the paper, the team proposes an atom-optical lattice system as the ideal test bed. Ultracold gases offer versatility for studying topological matter [see Topology inset] because a single apparatus can be used for repeated experiments. Here, researchers are able to alter the effective material through adjusting laser power.

Kai Sun explains that these advantages motivated the team to “design a system to realize topological state that has not been seen in condensed matter systems.”

An ultracold gas may not sound like a solid, but under certain conditions, this unusual quantum matter behaves just like a crystal made in nature. Neutral atoms trapped by a checkerboard of laser light are analogous to electrons in a crystalline solid. The light intensity determines the mobility of the atom gas around the lattice. If the atoms do not interact with each other, an energy band structure emerges that represents the semimetal. This semimetal has special properties that allow it to transform into topological insulator when the atoms begin to interact.**

What is a semimetal?

Condensed matter physicists classify materials according to their conductivity: insulators and metals. This property is related to the ability for electrons to leave their parent atoms and become mobile in a material.

In a single atom, electrons are restricted to certain energy levels. When many atoms form a solid, the individual energy levels mesh together and a new energy spectrum arises for the sea of electrons in a material. This is called a material’s band structure, where bands and gaps represent allowed and forbidden electron energies, respectively.

A valence band encompasses all the allowed energies if a solid were at absolute zero temperature. Electrons fill the valence band and are relatively localized to their parent atoms in the solid. Above the valence band is a conduction band, a zone that can be occupied but only if the electron somehow gains enough energy to overcome the forbidden gap region, becoming mobile.

So what makes a material an electrical conductor, or metal? Insulators have a gap between this conduction zone and valence band that exceeds the energy of the electrons. A well-known subset of insulators, called semiconductors, has a gap small enough that they can only conduct under certain conditions. Metals have no gap, so they are naturally conductive. This topological semimetal has no gap, but only at a small point in the energy spectrum. [see Figure 1]

Starting with the semimetal, these researchers show that allowing the particles to interact disrupts the system and forces a phase transition. Previously studied topological insulators are the result of single particles interacting with a type of internal magnetic field (called spin-orbit coupling).

W. Vincent Liu, co-author and professor at University Pittsburgh, explains this key feature, "A most exciting aspect of this research is that we seem to have found a first example of optical lattice gases that can reveal a quantum Hall-like topological state without needing an external magnetic field or spin-orbital coupling. Instead it is due to the effects of internal many-body interactions."

The team found that upon adding these interactions the particles spontaneously began to rotate [see Figure 2/animation]. Normally, lasers can generate rotation, either by stirring the sample or engineering effective magnetic fields. The proposal here offers not only novel states, but the spontaneously generated rotation may be a complementary experimental technique.

The proposed experiment uses established atomic physics techniques. Combining these ingredients may prove tricky, but would certainly open new possibilities for studying condensed matter physics.

Note: Hi-res images available upon request. Visit to see.

*The JQI researchers are also affiliated with the Condensed Matter Theory Center at UMD. They collaborated with many groups over these three publications. Please see individual publications for all author affiliations.

**The research results described here were presented across three publications:

1. “Topological semimetal in a fermionic optical lattice,” Kai Sun, W. Vincent Liu, Andreas Hemmerich, and S. Das Sarma, Nature Physics, DOI:10.1038/NPHYS2134 (2011)
2. “Fractional quantum Hall effect in the absence of Landau levels,” D.N. Sheng, Zheng-Cheng Gu, Kai Sun, and L. Sheng, Nature Communications, 2, 389, (2011)
3. “Nearly Flatbands with Nontrivial Topology,” Kai Sun, Zheng-Cheng Gu, Hosho Katsura, and S. Das Sarma, Physical Review Letters, 106, 236803, (2011)

[Accompanying Physics Viewpoint]

Media contacts at Joint Quantum Institute:
Emily Edwards, 301-405-2291,
Phillip F. Schewe, 301-405-0989,
Research Contacts:
Kai Sun Kai Sun
Sankar Das Sarma

Emily Edwards | Newswise Science News
Further information:

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>



Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

More VideoLinks >>>