Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Topological insulators: Magnetism is not causing loss of conductivity

22.02.2016

Topological insulators appeared to be rather well-understood from theory until now. The electrons that can only occupy "allowed" quantum states in the crystal lattice are free to move in only two dimensions, namely along the surface, behaving like massless particles.

Topological insulators are therefore highly conductive at their surfaces and electrically insulating within. Only magnetic fields should destroy this mobility, according to theory.


In pure bismuth-selenide (left) no bandgap is found. With the addition of magnetic manganese (4 percent; 8 percent), a band gap (dashed line) arises, and electrical conductivity disappears. This effect shows even at room temperature.

Credit: HZB

Now physicists headed by Oliver Rader and Jaime Sánchez-Barriga from HZB along with teams from other HZB departments, groups from Austria, the Czech Republic, Russia, and theoreticians in Munich have disproved this hypothesis.

They investigated samples for this purpose made of bismuth-selenide - a classic topological insulator - built up from enormous numbers of extremely thin layers, like puff pastry. These samples were doped with the magnetic element manganese (Mn), forming (Bi1_xMnx)2Se3 with various concentrations of Mn.

Theoretically, what is known as a band gap should have opened between the allowed electron states as a result of doping with magnetic impurities so that the previously conductive surface becomes insulating. As a result of the appearance of the band gap, the electrons also regain part of their mass. The magnetism of the impurities should be the critical influence in this process.

Theory disproved: Magnetism is not influencing the mobility of electrons

The physicists were able to actually detect the formation of a band gap in the doped samples. The mass of the electrons climbed from zero to one-sixth the mass of free electrons. They showed, however, that this band gap is not the result of ferromagnetic ordering in the interior or at the surface of the material, nor of the local magnetic moments of the manganese. The band gap formed independent of the strength of the magnetisation and even when the sample was doped with nonmagnetic impurities.

"We even measured surface band gaps that are ten times larger than the theoretically predicted magnetic band gaps, and actually independent of whether we had incorporated magnetic or nonmagnetic impurities", says Jaime Sánchez-Barriga.

Instead, they suggest an entirely different process in these samples that causes the band gap at the Dirac point: with the help of what is known as resonant photoemission spectroscopy, they were able to observe scattering processes that might be responsible for opening a band gap. The fundamental properties of topological insulators do not offer many possibilities for these kinds of scattering processes. The researchers think it is conceivable that the presence of the impurities enables the electrons to leave the surface and disappear into the bulk.

"It is always more interesting for experimentalists like us, of course, when the experiment does not confirm the theoretical expectation. This band gap is considerably larger than predicted by theory and additionally involves a different causal mechanism. In order be sure that we are not mistaken, we used the entire arsenal at BESSY II, such as photoelectron microscopy and magnetic fields up to seven tesla. This enabled us to really preclude magnetism occurring as a possible cause down to roughly the nanometre scale", explains Oliver Rader.

Two conclusions can already be drawn from this work: on one hand, that topologically shielded states are still far from being completely understood. On the other, it means that problems previously overlooked are now in the spotlight. How can scattering processes be minimised by the choice of magnetic impurities? And what is the role of lattice location of the impurities in the host? Since Topological insulators are promising candidates for new information technologies, those questions should be explored in depth.

Media Contact

Antonia Roetger
antonia.roetger@helmholtz-berlin.de
49-308-062-43733

 @HZBde

http://www.helmholtz-berlin.de 

Antonia Roetger | Helmholtz-Zentrum Berlin für Materialien und Energie

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>