Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel topological crystalline insulator shows mass appeal

30.08.2013
Experiments confirm defining characteristics of topological crystalline insulators

Disrupting the symmetrical structure of a solid-state topological crystalline insulator creates mass in previously mass-less electrons and imparts an unexpected level of control in this nascent class of materials, an international team of researchers reports in the current edition of Science Express.

The researchers not only confirmed several theoretical predictions about topological crystalline insulators (TCIs), but made a significant experimental leap forward that revealed even more details about the crystal structure and electronic behavior of these newly identified materials, according to Boston College Associate Professor of Physics Vidya Madhavan, one of the lead authors of the report.

The findings could pave the way for engineering the electronic properties of TCI surfaces towards novel functionalities at the nanoscale.

"There is a lot of rich physics here that's waiting to be explored," said Madhavan. "We've opened the door to better understanding topological crystalline insulators and the potential of these materials."

Confirmed within the past few years, topological insulators possess interiors that behave like insulators, blocking the flow of electrons. Yet externally, they contain conducting states where electrons can move freely across their surfaces. A few years ago, physicists first posited the existence of TCIs, a new class of topological materials where conducting surface electrons are theorized to obey fundamental quantum laws set by the crystalline structure of the interior.

Starting with a TCI consisting of lead and selenium, researchers sought to disrupt its structural symmetry by provoking, or doping, the material through the addition of tin, Madhavan said. The subsequent disruption had a dramatic effect on mass-less "Dirac" electrons that are present within the material and behave as relativistic particles. The manipulation added mass to some of these electrons, which took their places side-by-side with the Dirac electrons, a startling result in a solid-state material, Madhavan said.

The new massive electrons were measured topologically through scanning tunneling microscopy and electrically through spectroscopy, the researchers report.

The analysis revealed the Dirac point, which is the defining characteristic of the TCI, said Madhavan. Furthermore, the researchers found that varying the amount of tin imparted a measure of control over the material's properties, fulfilling yet another theoretical prediction.

Madhavan said the results confirmed the TCI's exotic band structure, a measure of the energy a surface electron may or may not possess within a solid. At the same time, the fundamental properties of the TCI remained accessible.

Moreover, observing and controlling Dirac electrons in TCIs paves the way for investigating relativistic physics in solid state systems: physics which was previously accessible only in the experiments of high-energy physics where particles are accelerated to speeds close to light.

In addition, the experiments revealed two distinct regimes of fermiology, an energy boundary used to make determinations about the properties of metals and semiconductors.

Along with Madhavan, the project team featured some of the leading researchers in condensed matter physics, including Boston College Assistant Professor of Physics Stephen Wilson, MIT Assistant Professor of Physics Liang Fu, Princeton University Professor of Physics M. Zahid Hasan, Northeastern University Professor of Physics Arun Bansil and National Taiwan University Researcher Fang Cheng Chou.

Ed Hayward | EurekAlert!
Further information:
http://www.bc.edu

More articles from Physics and Astronomy:

nachricht The random raman laser: A new light source for the microcosmos
05.05.2015 | The Optical Society

nachricht A New Gateway to the Microcosmos
05.05.2015 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The random raman laser: A new light source for the microcosmos

Texas A&M University researchers demonstrate how a narrow-band strobe light source for speckle-free imaging has the potential to reveal microscopic forms of life

In modern microscope imaging techniques, lasers are used as light sources because they can deliver fast pulsed and extremely high-intensity radiation to a...

Im Focus: Pulsar with widest orbit ever detected

Discovered by high school research team

A team of highly determined high school students discovered a never-before-seen pulsar by painstakingly analyzing data from the National Science Foundation's...

Im Focus: Erosion, landslides and monsoon across the Himalaya

Scientists from Nepal, Switzerland and Germany was now able to show how erosion processes caused by the monsoon are mirrored in the sediment load of a river crossing the Himalaya.

In these days, it was again tragically demonstrated that the Himalayas are one of the most active geodynamic regions of the world. Landslides belong to the...

Im Focus: Through the galaxy by taxi - The Dream Chaser Space Utility Vehicle

A world-class prime systems integrator and electronic systems provider known for its rapid, innovative, and agile technology solutions, Sierra Nevada Corporation (SNC) is currently developing a new space transportation system called the Dream Chaser.

The ultimate aim is to construct a multi-mission-capable space utility vehicle, while accelerating the overall development process for this critical capability...

Im Focus: High-tech textiles – more than just clothes

Today, textiles are used for more than just clothes or bags – they are high tech materials for high-tech applications. High-tech textiles must fulfill a number of functions and meet many requirements. That is why the Fraunhofer Institute for Silicate Research ISC dedicated some major developing work to this most intriguing research area. The result can now be seen at Techtextil trade show in Frankfurt from 4 to 7 May. On display will be novel textile-integrated sensors, a unique multifunctional coating system for textiles and fibers, and textile processing of glass, carbon, and ceramics fibers to fiber preforms.

Thin materials and new kinds of sensors now make it possible to integrate silicone elastomer sensors in textiles. They are suitable for applications in medical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Green Summit 2015: the summit of the essential

05.05.2015 | Event News

HHL Energy Conference on May 11/12, 2015: Students Discuss about Decentralized Energy

23.04.2015 | Event News

“Developing our cities, preserving our planet”: Nobel Laureates gather for the first time in Asia

23.04.2015 | Event News

 
Latest News

From brittle to plastic in 1 breath

05.05.2015 | Materials Sciences

Ocean currents disturb methane-eating bacteria

05.05.2015 | Earth Sciences

Slowdown after Ice Age sounds a warning for Great Barrier Reef's future

05.05.2015 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>