Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tool makes search for Martian life easier

09.02.2011
Red Planet a good fit for laser-ion funnel mass spectrometry

Finding life on Mars could get easier with a creative adaption to a common analytical tool that can be installed directly on the robotic arm of a space rover.

In a recent paper published online in the journal Planetary and Space Science, a team of researchers propose adding a laser and an ion funnel to a widely used scientific instrument, the mass spectrometer, to analyze the surfaces of rocks and other samples directly on Mars' surface. The researchers demonstrated that the combined system could work on the spot, without the sample handling that mass spectrometry usually requires.

"There are a lot of exciting discoveries about Mars that have yet to be made," said the paper's lead author, Paul Johnson. "This technique could make understanding the composition of rocks and soils on Mars — possibly including evidence of life — much easier."

Johnson, of NASA's Jet Propulsion Laboratory in Pasadena, Calif., came up with the idea after reading about an ion funnel technology for mass spectrometry developed by Keqi Tang and Dick Smith of the Department of Energy's Pacific Northwest National Laboratory. William Brinckerhoff of NASA's Goddard Space Flight Center in Greenbelt, Md., contributed his expertise in miniaturizing scientific instruments to the project, while Robert Hodyss, also of JPL, provided hands-on expertise during experimentation and testing.

Here on Earth, mass spectrometry is a common analytical technique scientists use to identify molecules, their elements and their isotopes in samples ranging from rocks to proteins. It works by turning a sample's molecules into electrically charged ions. A mass spectrometer then precisely measures the mass of ions and ion fragments to identify the sample's contents at a detailed molecular level.

Mass spectrometry isn't new to space exploration. It was used to analyze Martian soil for the first time as part of NASA's Viking program in the 1970s. And it's planned to be part of the Mars Science Laboratory's Curiosity rover, which will lift off for the Red Planet this November. But each time it's been used in space, the samples had to be extensively prepared before they could be analyzed.

With Viking, for example, soil had to be scooped up, placed into a chamber and heated to make the sample a gas before it could be analyzed. The Mars Science Laboratory will be able to do a more thorough sample analysis than Viking could, but it will still need to prepare its samples beforehand. The more a sample has to be handled, the greater chance there is for the equipment to malfunction or the analysis to fail.

On Earth, scientists do mass spectrometry within a vacuum chamber. But that requires either finding a small enough sample, or cutting down the sample to fit into the chamber. Any such efforts on Mars have to be done with a robotic rover that's controlled by human operators millions of miles away.

"Cutting rocks, picking them up and moving them around, all this adds complexity," Johnson said. "Complexity makes it more difficult to conduct experiments with a robotic rover. Plus, adding new tools so the instrument can do these extra tasks increase size, weight and power consumption. All this makes sending a mass spectrometer into space even more challenging."

Trying to simplify this work, Johnson and Hodyss at JPL, which manages NASA's Mars Exploration Project, turned to a technique called laser ablation. The method involves shooting a laser at the sample's surface, which creates a plume of molecules and ions that can then be analyzed by the mass spectrometer.

But how do you get the sample ions to enter the mass spectrometer? Even on our planet, that problem has plagued researchers for years. A large percentage of a sample was traditionally lost at this stage — until recently, that is. PNNL researchers Dick Smith and Keqi Tang developed a new technology for mass spectrometers in the late 1990s to address that challenge.

Their electrodynamic ion funnel is a series of conductive, progressively smaller electric ring electrodes that efficiently pull in and focus more ions into the mass spectrometer than without the funnel. This makes mass spectrometers tremendously more sensitive. Fortunately, the ion funnel works best when its surrounding environment has an air pressure of about 5 torr, which also happens to be the atmospheric pressure on Mars.

"We didn't specifically design the ion funnel for space exploration, but we're excited that it and Mars are a good fit," said Tang.

JPL asked PNNL to help test whether the combination of laser ablation and an ion funnel could make in situ, or "in place," mass spectrometry possible on Mars. A standard laboratory mass spectrometer was equipped with laser and an ion funnel attachments, and the ion funnel end was placed inside a sealed chamber that matched Mars' atmospheric conditions. The researchers shot laser pulses at various samples, such as copper, stainless steel and gypsum. As they suspected, a small layer of each sample's surface atoms was transformed into ions and the ion funnel quickly pulled them into the mass spectrometer, which identified the samples.

"This system could be developed into a 'point and shoot' instrument for space analysis," Johnson said

The results are promising, but further work is needed to develop ion funnel-equipped mass spectrometers ready for space. The next step is to make the system as small and light as possible so it could be used on a space exploration rover. The authors plan to pare it down enough to fit onto a rover's robotic arm.

Funded by NASA, the team performed their experiments at JPL, which is managed by the California Institute of Technology. The ion funnel they tested was developed and constructed at EMSL, the Department of Energy's Environmental Molecular Sciences Laboratory on PNNL's campus.

REFERENCE: Paul V. Johnson, Robert Hodyss, Keqi Tang, William B. Brinckerhoff, Richard D. Smith, The laser ablation ion funnel: Sampling for In Situ mass spectrometry on mars, Planetary and Space Science, online Jan. 11, 2011, DOI 10.1016/j.pss/2011.01.004.

NASA's Jet Propulsion Laboratory is operated by the California Institute of Technology in Pasadena, Calif. The Jet Propulsion Laboratory is the lead U.S. center for robotic exploration of the solar system, and conducts major programs in space-based Earth sciences and astronomy. JPL spacecraft have visited all of the planets from Mercury to Neptune.

EMSL, the Environmental Molecular Sciences Laboratory, is a national scientific user facility sponsored by the Department of Energy's Office of Science, Biological and Environmental Research program that is located at Pacific Northwest National Laboratory. EMSL offers an open, collaborative environment for scientific discovery to researchers around the world. EMSL's technical experts and suite of custom and advanced instruments are unmatched. Its integrated computational and experimental capabilities enable researchers to realize fundamental scientific insights and create new technologies. Follow EMSL on Facebook.

Pacific Northwest National Laboratory is a Department of Energy Office of Science national laboratory where interdisciplinary teams advance science and technology and deliver solutions to America's most intractable problems in energy, the environment and national security. PNNL employs 4,900 staff, has an annual budget of nearly $1.1 billion, and has been managed by Ohio-based Battelle since the lab's inception in 1965. Follow PNNL on Facebook, LinkedIn and Twitter.

Franny White | EurekAlert!
Further information:
http://www.pnl.gov

More articles from Physics and Astronomy:

nachricht Tune your radio: galaxies sing while forming stars
21.02.2017 | Max-Planck-Institut für Radioastronomie

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>