Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TMT Will Take Discoveries of Stars Orbiting the Milky Way's Monster Black Hole to the Next Level

08.10.2012
Researchers have discovered a star that whips around the giant black hole at the center of our galaxy in record time, completing an orbit every 11.5 years.

The finding, appearing today in the journal Science, points ahead to groundbreaking experiments involving Einstein's general theory of relativity. Those tests will be fully enabled by the Thirty Meter Telescope (TMT), slated to begin observations next decade.

The record-setting star, called S0-102, was detected with the twin 10-meter telescopes at the W.M. Keck Observatory in Hawaii. For the past 17 years, the telescopes have imaged the galactic core, where a team of astronomers have hunted for stars with short orbital periods. These stars offer a never-before-possible test of how a supermassive black hole's gravity warps the fabric of space-time.

"The discovery of S0-102 is a crucial ingredient for our ultimate goal of revealing the fabric of space-time around a black hole for the first time," said Andrea Ghez, leader of the team and a professor of physics and astronomy at the University of California, Los Angeles and who is a member of the TMT project’s Science Advisory Committee

Although Keck is among the most advanced astronomical instruments now in operation, it will require the future power of TMT and its adaptive optics system to put Einstein's theory through its paces.

"In order to test the heart of relativity, Einstein's equations, we have to wait for the next major technological breakthrough: TMT with its multi-conjugate adaptive optics system," said Leo Meyer, a member of Ghez’ team and lead author of the new paper. Meyer, along with co-authors Sylvana Yelda and Tuan Do, is part of TMT’s astrometry working group that studies the unique capabilities of TMT to observe the motion of the faintest objects in the universe.

“It is amazing to think about what TMT will be capable of," said Ghez.

TMT's adaptive optics system builds on those presently employed by premier observatories including Keck, Gemini, and the Very Large Telescope. Adaptive optics helps ground-based telescopes collect sharper images by compensating for the distorting effects of atmospheric turbulence. The systems rely on deformable mirrors and lasers that create "guide stars" in the sky to provide reference points for keeping observations in focus.

The adaptive optics designed for TMT, along with its huge primary mirror, will provide breakthroughs on many fronts, Ghez explained. On TMT, the angular resolution – the ability to see fine details – will be three times sharper than that of Keck. But the gain in astrometric, or tracking precision of individual stars in a crowded region like the center of our Galaxy will be at least a factor of 10. It is also conceivable that TMT will find stars that are even more tightly bound to the Milky Way's central black hole than S0-102.

Like Keck, TMT will track the motion of stars, such as S0-102, that have elliptical (oval-shaped) orbits. The orbits bring the stars periodically closer to the black hole. This proximity, coupled with TMT's precision, will allow for two key tests of relativity.

In the first, a star deep in the gravity well of a black hole should have its light be stretched out, or redshifted, to a certain degree, and have its orbit deviate from a perfect ellipse. A second aspect of the deviation should reveal that the stars' orbits experience precession, or a slight shifting, creating a flower-shaped pattern of orbits around the black hole over time. The deviations will speak to the validity of the actual equations underpinning general relativity.

Researchers know that at the heart of a black hole, Einstein's general theory of relativity should begin to break down. Should some of the results gleaned by TMT not match with the venerated theory, a new window would open into how gravity fundamentally works at all scales of the universe, from the grandest to the smallest.

"As strong a theory as general relativity is for large-scale phenomena, we do not know how to reconcile it with quantum mechanics, the theory that describes phenomena on atomic and subatomic scales," said Ghez. "One reason, therefore, that we want to build TMT is to delve into the most fundamental workings of our universe."

TMT is the next-generation astronomical observatory that is scheduled to begin scientific operations in 2021 on Mauna Kea, Hawaii. TMT is a collaboration of the California Institute of Technology, University of California, Association of Canadian Universities for Research in Astronomy, the National Astronomical Observatory of Japan, a consortium of Chinese institutions led by the National Astronomical Observatories of the Chinese Academy of Sciences, and institutions in India supported by the Department of Science and Technology of India.

Gordon Squires | Newswise Science News
Further information:
http://www.tmt.org

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>