Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny Planet-Finding Mirrors Borrow from Webb Telescope Playbook

25.05.2012
NASA's next flagship mission — the James Webb Space Telescope — will carry the largest primary mirror ever deployed. This segmented behemoth will unfold to 21.3 feet in diameter once the observatory reaches its orbit in 2018.

A team of scientists at NASA's Goddard Space Flight Center in Greenbelt, Md., now is developing an instrument that would image and characterize planets beyond the solar system possibly from a high-altitude balloon has borrowed a page from the Webb telescope's playbook. It has created an infinitely smaller segmented mirror that currently measures less than a half-inch in diameter and promises to revolutionize space-based telescopes in the future.

The multiple mirror array (MMA), now being developed by the Berkeley, Calif.-based Iris AO, Inc., under a NASA Small Business Innovative Research grant, is one of the enabling technologies on the Visible Nulling Coronagraph (VNC), a hybrid instrument combining an interferometer with a coronagraph — in itself a first. In laboratory tests, the VNC has proven that it can detect, image, and characterize likely targets. "Nearly all the technologies are completed or are on track," said Principal Investigator Rick Lyon of NASA Goddard, who, with his colleague, Mark Clampin, began working on the VNC more than three years ago.

As a result of that progress, the team hopes to apply the technology to a balloon-borne instrument called the Big Balloon Exoplanet Nulling Interferometer (BigBENI), which Lyon believes could be ready for operations as early as 2016. Carried on a gondola attached to a high-altitude balloon, the VNC-equipped BigBENI would be able to suppress starlight and increase the contrast of Jupiter- and ultimately Earth-sized planets.

The science that BigBENI could perform is compelling, Lyon added. At 135,000 feet — the altitude at which NASA balloons fly — Lyon estimates he could detect and image at least eight science targets in less than five hours and an additional six in about 20 hours. "BigBENI offers a nearer-term way to image planets" and search for specific chemicals that might indicate the presence of life — a long-sought science goal.

Mirror Array Central to Capability

Such a capability is due in large part to the tiny mirrors, Lyon said. "MMA is a legacy of the Webb telescope," he added. "Segmented mirrors are the future, not only for traditional observing missions like Webb, but also for non-traditional uses, like the one we've developed for planet finding. No other coronagraph has segmented mirrors."

Under the VNC/BigBENI concept — whose development NASA currently supports through several technology-development programs — starlight collected by a primary mirror or telescope travels down the instrument's optical path to the first of two beamsplitters within each arm of the VNC interferometer. The MMA is located in only one arm. A second beamsplitter recombines the beams into two output paths known as the "bright" and "dark" channels. The starlight passes to the bright and the planet light to the dark.

Because MMA is a mirror image of the telescope, it can see wavefront and amplitude errors caused by vibration, dust, and turbulence that prevent the light from being perfectly focused as it's collected. The MMA not only senses those errors, but also corrects them.

Algorithms that Lyon developed calculate errors in the telescope's wavefront and instruct MMA's 169 tiny nano-size segments — each measuring the width of three human hairs and perched atop tiny finger-like devices — to piston, tip, and tilt up to thousands of times per second to precisely correct the distortions and then cancel the starlight in the dark channel. A second technology, the spatial filter array, passively acts in concert with the MMA to further correct both amplitude and wavefront errors.

Combined, these technologies allow the mirror array to create an internal coronagraph to suppress starlight and increase the contrast of the circumstellar region surrounding a star, thereby allowing scientists to detect planets and dust disks. BigBENI's mirror array would contain 313 segments, Lyon said.

Applications Abound

While unique in its application as a coronagraph, MMA and its associated wavefront-sensing-and-control technologies, hold great promise for other applications, including medical imaging, LASIK eye surgery, and even military gun sights, Lyon said. But for NASA, the benefit lies in being able to fly less expensive telescopes.

"Ultimately with this technology, you can get away with a low-cost, low-risk primary mirror," Lyon said. In contrast, Webb's much larger segmented mirror was expensive to build. Technicians carefully constructed the mirror segments to an exact optical prescription and then mounted them on a mechanism that positions each to perfect alignment, much like the tiny fingers on MMA.

To assure a perfect focus, however, the Webb telescope will first image a target. After ground controllers have analyzed the image with multiple algorithms, they then can send commands to tweak the mirrors' alignment. This compares with MMA's ability to perform up to thousands of wavefront calculations per second, position the mirror segments, and then maintain a tight alignment — all from onboard the instrument.

"The idea is can we come up with something that is up to hundreds of times more precise than the Webb telescope's wavefront control? I think we can. We're doing it now in a standard lab. If you can do wavefront sensing and control fast enough, which we've proven, you can get away with a not-so-great telescope," Lyon said.

For other technology news, visit:
http://gsfctechnology.gsfc.nasa.gov
For more information on the James Webb Space Telescope, visit:
www.jwst.nasa.gov Lori Keesey
NASA's Goddard Space Flight Center, Greenbelt, Md.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/topics/technology/features/mirror-playbook.html

More articles from Physics and Astronomy:

nachricht Pulses of electrons manipulate nanomagnets and store information
21.07.2017 | American Institute of Physics

nachricht Vortex photons from electrons in circular motion
21.07.2017 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>