Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny "Nanoflares" Might Heat the Sun's Corona

17.10.2014

Why is the Sun's million-degree corona, or outermost atmosphere, so much hotter than the Sun's surface?

Why is the Sun's million-degree corona, or outermost atmosphere, so much hotter than the Sun's surface? This question has baffled astronomers for decades. Today, a team led by Paola Testa of the Harvard-Smithsonian Center for Astrophysics (CfA) is presenting new clues to the mystery of coronal heating using observations from the recently launched Interface Region Imaging Spectrograph (IRIS). The team finds that miniature solar flares called "nanoflares" - and the speedy electrons they produce - might partly be the source of that heat, at least in some of the hottest parts of the Sun's corona.


This image from the Interface Region Imaging Spectrograph (IRIS) shows emission from hot plasma (T ~ 80,000-100,000 K) in the Sun's transition region - the atmospheric layer between the surface and the outer corona. The bright, C-shaped feature at upper center shows brightening in the footprints of hot coronal loops, which is created by high-energy electrons accelerated by nanoflares. The vertical dark line corresponds to the slit of the spectrograph. The image is color-coded to show light at a wavelength of 1,400 Angstroms. The size of each pixel corresponds to about 120 km (75 miles) on the Sun.

NASA/IRIS

A solar flare occurs when a patch of the Sun brightens dramatically at all wavelengths of light. During flares, solar plasma is heated to tens of millions of degrees in a matter of seconds or minutes. Flares also can accelerate electrons (and protons) from the solar plasma to a large fraction of the speed of light. These high-energy electrons can have a significant impact when they reach Earth, causing spectacular aurorae but also disrupting communications, affecting GPS signals, and damaging power grids.

Those speedy electrons also can be generated by scaled-down versions of flares called nanoflares, which are about a billion times less energetic than regular solar flares. "These nanoflares, as well as the energetic particles possibly associated with them, are difficult to study because we can't observe them directly," says Testa.

Testa and her colleagues have found that IRIS provides a new way to observe the telltale signs of nanoflares by looking at the footpoints of coronal loops. As the name suggests, coronal loops are loops of hot plasma that extend from the Sun's surface out into the corona and glow brightly in ultraviolet and X-rays.

IRIS does not observe the hottest coronal plasma in these loops, which can reach temperatures of several million degrees. Instead, it detects the ultraviolet emission from the cooler plasma (~18,000 to 180,000 degrees Fahrenheit) at their footpoints. Even if IRIS can't observe the coronal heating events directly, it reveals the traces of those events when they show up as short-lived, small-scale brightenings at the footpoints of the loops.

The team inferred the presence of high-energy electrons using IRIS high-resolution ultraviolet imaging and spectroscopic observations of those footpoint brightenings. Using computer simulations, they modeled the response of the plasma confined in loops to the energy transported by energetic electrons. The simulations revealed that energy likely was deposited by electrons traveling at about 20 percent of the speed of light.

The high spatial, temporal, and spectral resolution of IRIS was crucial to the discovery. IRIS can resolve solar features only 150 miles in size, has a temporal resolution of a few seconds, and has a spectral resolution capable of measuring plasma flows of a few miles per second.

Finding high-energy electrons that aren't associated with large flares suggests that the solar corona is, at least partly, heated by nanoflares. The new observations, combined with computer modeling, also help astronomers to understand how electrons are accelerated to such high speeds and energies - a process that plays a major role in a wide range of astrophysical phenomena from cosmic rays to supernova remnants. These findings also indicate that nanoflares are powerful, natural particle accelerators despite having energies about a billion times lower than large solar flares.

"As usual for science, this work opens up an entirely new set of questions. For example, how frequent are nanoflares? How common are energetic particles in the non-flaring corona? How different are the physical processes at work in these nanoflares compared to larger flares?" says Testa.

The paper reporting this research is part of a special issue of the journal Science focusing on IRIS discoveries.
Headquartered in Cambridge, Mass., the Harvard-Smithsonian Center for Astrophysics (CfA) is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. CfA scientists, organized into six research divisions, study the origin, evolution and ultimate fate of the universe.
For more information, contact:

David A. Aguilar
Director of Public Affairs
Harvard-Smithsonian Center for Astrophysics
617-495-7462
daguilar@cfa.harvard.edu

Christine Pulliam
Public Affairs Specialist
Harvard-Smithsonian Center for Astrophysics
617-495-7463
cpulliam@cfa.harvard.edu

Christine Pulliam | Eurek Alert!
Further information:
http://www.cfa.harvard.edu/news/2014-26

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>