Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny laser sensor heightens bomb detection sensitivity

21.07.2014

New technology under development at the University of California, Berkeley, could soon give bomb-sniffing dogs some serious competition.

A team of researchers led by Xiang Zhang, UC Berkeley professor of mechanical engineering, has found a way to dramatically increase the sensitivity of a light-based plasmon sensor to detect incredibly minute concentrations of explosives. They noted that it could potentially be used to sniff out a hard-to-detect explosive popular among terrorists.


The plasmon laser sensor consists of a 50-nanometer-thick semiconductor separated from the metal surface by an 8-nanometer-thick dielectric gap layer. Surface defects on the semiconductor interact with molecules of the explosive DNT.

Credit: Ren-Min Ma and Sadao Ota

Their findings are to be published Sunday, July 20, in the advanced online publication of the journal Nature Nanotechnology.

They put the sensor to the test with various explosives – 2,4-dinitrotoluene (DNT), ammonium nitrate and nitrobenzene – and found that the device successfully detected the airborne chemicals at concentrations of 0.67 parts per billion, 0.4 parts per billion and 7.2 parts per million, respectively. One part per billion would be akin to a blade of grass on a football field.

The researchers noted that this is much more sensitive than the published results to date for other optical sensors.

"Optical explosive sensors are very sensitive and compact," said Zhang, who is also director of the Materials Science Division at the Lawrence Berkeley National Laboratory and director of the National Science Foundation Nanoscale Science and Engineering Center at UC Berkeley. "The ability to magnify such a small trace of an explosive to create a detectable signal is a major development in plasmon sensor technology, which is one of the most powerful tools we have today."

The new sensor could have many advantages over current bomb-screening methods.

"Bomb-sniffing dogs are expensive to train and they can become tired," said study co-lead author Ren-Min Ma, an assistant professor of physics at Peking University who did this work when he was a postdoctoral researcher in Zhang's lab. "The other thing we see at airports is the use of swabs to check for explosive residue, but those have relatively low-sensitivity and require physical contact. Our technology could lead to a bomb-detecting chip for a handheld device that can detect the tiny-trace vapor in the air of the explosive's small molecules."

The sensor could also be developed into an alarm for unexploded land mines that are otherwise difficult to detect, the researchers said. According to the United Nations, landmines kill 15,000 to 20,000 people every year. Most of the victims are children, women and the elderly.

Unstable and hungry for electrons

The nanoscale plasmon sensor used in the lab experiments is much smaller than other explosive detectors on the market. It consists of a layer of cadmium sulfide, a semiconductor, laid on top of a sheet of silver with a layer of magnesium fluoride in the middle.

In designing the device, the researchers took advantage of the chemical makeup of many explosives, particularly nitro-compounds such as DNT and its more well-known relative, TNT. Not only do the unstable nitro groups make the chemicals more explosive, they are also characteristically electron deficient, the researchers said. This quality increases the interaction of the molecules with natural surface defects on the semiconductor. The device works by detecting the increased intensity in the light signal that occurs as a result of this interaction.

Potential use to sense hard-to-detect explosive

"We think that higher electron deficiency of explosives leads to a stronger interaction with the semiconductor sensor," said study co-lead author Sadao Ota, a former Ph.D. student in Zhang's lab who is now an assistant professor of chemistry at the University of Tokyo.

Because of this, the researchers are hopeful that their plasmon laser sensor could detect pentaerythritol tetranitrate, or PETN, an explosive compound considered a favorite of terrorists. Small amounts of it pack a powerful punch, and because it is plastic, it escapes x-ray machines when not connected to detonators. It is the explosive found in Richard Reid's shoe bomb in 2001 and Umar Farouk Abdulmtallab's underwear bomb in 2009.

U.S. Attorney General Eric Holder Jr. was recently quoted in news reports as having "extreme, extreme concern" about Yemeni bomb makers joining forces with Syrian militants to develop these hard-to-detect bombs, which can be hidden in cell phones and mobile devices.

"PETN has more nitro functional groups and is more electron deficient than the DNT we detected in our experiments, so the sensitivity of our device should be even higher than with DNT," said Ma.

Latest generation of plasmon sensors

The sensor represents the latest milestone in surface plasmon sensor technology, which is now used in the medical field to detect biomarkers in the early stages of disease.

The ability to increase the sensitivity of optical sensors had traditionally been restricted by the diffraction limit, a limitation in fundamental physics that forces a tradeoff between how long and how small light can be trapped. By coupling electromagnetic waves with surface plasmons, the oscillating electrons found at the surface of metals, researchers were able to squeeze light into nanosized spaces, but sustaining the confined energy was challenging because light tends to dissipate at a metal's surface.

The new device builds upon earlier work in plasmon lasers by Zhang's lab that compensated for this light leakage by using reflectors to bounce the surface plasmons back and forth inside the sensor – similar to the way sound waves are reflected across the room in a whispering gallery – and using the optical gain from the semiconductor to amplify the light energy.

Zhang said the amplified sensor creates a much stronger signal than the passive plasmon sensors currently available, which work by detecting shifts in the wavelength of light. "The difference in intensity is similar to going from a light bulb for a table lamp to a laser pointer," he said. "We create a sharper signal which makes it easier to detect even smaller changes for tiny traces of explosives in the air."

###

The researchers noted that the sensor could have applications beyond chemical and explosive detection, such as use in biomolecular research.

The U.S. Air Force Office of Scientific Research Multi-University Research Initiative program helped support this work.

Sarah Yang | Eurek Alert!

Further reports about: Plasmon Laser Sensor electrons explosive physics semiconductor

More articles from Physics and Astronomy:

nachricht One-way roads for spin currents
23.05.2018 | Singapore University of Technology and Design

nachricht Tunable diamond string may hold key to quantum memory
23.05.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>