Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Timely technology sees tiny transitions

24.06.2010
New technique can sense movement of single molecules over hours

Scientists can detect the movements of single molecules by using fluorescent tags or by pulling them in delicate force measurements, but only for a few minutes. A new technique by Rice University researchers will allow them to track single molecules without modifying them -- and it works over longer timescales.

In the current issue of Nanotechnology, a team led by Jason Hafner, an associate professor of physics and astronomy and of chemistry, has shown that the plasmonic properties of nanoparticles can "light up" molecular interactions at the single-molecule limit in ways that will be useful to scientists.

Hafner's method takes advantage of the ability of metal nanoparticles to focus light down to biomolecular scales through an effect called localized surface plasmon resonance (LSPR). The gold nanoparticles ultimately used in the experiment scatter light in visible wavelengths, which can be detected and spectrally analyzed in a microscope.

"The exact peak wavelength of the resonance is highly sensitive to small perturbations in the nearby dielectric environment," said graduate student Kathryn Mayer, the lead student on the experiment. "By tracking the peak with a spectrometer, we can detect molecular interactions near the surface of the nanoparticles."

Hafner first discussed their progress at a 2006 conference after a presentation on gold nanostars his lab had developed. "We had extremely preliminary data, and I said, 'Maybe we've got it.' I thought we were close," he recalled.

What took time was finding the right particle. "We started with nanorods, which don't scatter light well, at least not the small nanorods we produce in my lab. Then we tried nanostars and found they were very bright and sensitive, but each was a different shape and had a different peak wavelength."

The team settled on bipyramids, 140-nanometer-long, 10-sided gold particles that focus light at their sharp tips, creating a halo-like "sensing volume," the dielectric environment in which changes can be read by a spectrometer.

Hafner and his colleagues borrowed bioconjugate chemistry techniques, coating the bipyramids with antibodies and then adding antigens that strongly bind to them. Then the antigens were rinsed off. Whenever one was released from its bond to the bipyramid antibody, the researchers detected a slight shift toward the blue in the red light naturally scattered by gold bipyramids.

The process is "label-free," meaning the molecule itself is being detected, rather than a fluorescent tag that requires modification of the molecule, Hafner said. Also, the dielectric property being detected is permanent, so molecules could be tracked for more than 10 hours, as compared with only minutes with current methods.

"The ability to measure over long time scales opens the possibility to study systems with strong affinity at the single-molecule limit, such as lectin-carbohydrate interactions responsible for cell recognition and adhesion," Hafner said. "Other single-molecule methods based on fluorescence are limited by photo bleaching, and those based on force measurements are limited by radiation damage and mechanical instabilities."

Work needs to be done before LSPR becomes an ideal biological sensor, he said. The team plans to tweak the bipyramids and will test other particles.

"With this bipyramid, we went a little too red," he said. "It's a compromise. Make them long and they're really sensitive, but so red that we don't get much signal. Make them shorter, they're somewhat less sensitive but you have more signal.

"If we can get the signal-to-noise ratio up by a factor of two or three, we think it will be a powerful method for biological research."

In addition to Mayer, Hafner's co-authors included Peter Nordlander, a Rice professor of physics and astronomy and of electrical and computer engineering, former Rice graduate student Feng Hao, now a postdoctoral fellow at Sandia National Laboratories, and Rice graduate student Seunghyun Lee.

Funding for the project came from the National Science Foundation's Integrative Graduate Research and Educational Training program and Nanoscale Science and Engineering Initiative, the U.S. Army Research Office and the Welch Foundation.

Read the abstract here: http://iopscience.iop.org/0957-4484/21/25/255503.

Download images here: http://www.media.rice.edu/images/media/NEWSRELS/HAFNER1_bipyramid.jpg

CAPTION: Computer simulation shows a bipyramid's electric field. (Credit Nordlander Lab/Rice University)

http://www.media.rice.edu/images/media/NEWSRELS/HAFNER2_bipyramids.jpg

CAPTION: Gold bipyramids photographed by a scanning electron microscope. (Credit Hafner Lab/Rice University)

David Ruth | EurekAlert!
Further information:
http://www.rice.edu

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>