Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Timely discovery: Physics research sheds new light on quantum dynamics

16.05.2012
Kansas State University physicists and an international team of collaborators have made a breakthrough that improves understanding of matter-light interactions.

Their research allows double ionization events to be observed at the time scale of attoseconds, which are one-billionth of a billionth of a second. The physicists have also shown that these ionization events occur earlier than thought -- a key factor to improving knowledge of correlated electron dynamics, which involve two electrons and their interactions with each other. The work appears in a recent issue of Nature Communications.

"The research involves studying if these correlated electrons, ejected from an atom or a molecule, are traveling in the same or opposite directions," said Nora Johnson, a doctoral student in physics from Dell Rapids, S.D. "We can also determine if one electron has all the energy or if they share energy equally."

Other university researchers involved include Itzik Ben-Itzhak, university distinguished professor of physics, and Matthias Kling, assistant professor of physics. Kling is the principal investigator for the project and is on research leave at the Max Planck Institute of Quantum Optics in Garching, Germany, where he is performing related research. All of the researchers are involved with the university's James R. Macdonald Laboratory.

Double ionization occurs when two electrons are removed from an atom -- a process that can be caused by an intense laser pulse. When double ionization occurs in the laser field it can take the form of a sequential process, in which the laser removes one electron and then removes the other electron. This project focuses on another mechanism -- the nonsequential process for ionization -- in which the laser removes one electron, which is accelerated and hits a second electron to excite it. The laser then knocks out the second electron from the atom.

The researchers sent a four femtosecond-long laser pulse onto argon atoms. A femtosecond is a millionth of a billionth of a second. While most of the argon atoms were singly ionized, approximately every thousandth atom underwent nonsequential double ionization.

"The surprising result is that everybody expected that the second electron becomes excited and then, when the laser field is the strongest, this electron is removed," said Ben-Itzhak, director of the Macdonald laboratory. "But it actually happens earlier."

The researchers discovered that the time between the recollision and the second ionization is about 400 attoseconds. This is about 200 attoseconds earlier than the peak of the field, which is when physicists expected the second ionization to occur.

Johnson conducted her early experiments at the Macdonald Laboratory. She performed more extensive experiments during a 2009 Fulbright Fellowship at the Max Planck Institute of Quantum Optics. The two organizations have an ongoing collaboration and the Kansas State University team is directly funded by a $400,000 National Science Foundation grant.

"The key is that Nora has brought knowledge from Germany about short pulses and we can now continue these experiments in Kansas," Ben-Itzhak said. "We have an ongoing collaboration with them that goes both ways."

Now that the researchers have made an important discovery with atoms, Johnson is performing a similar experiment with molecules. She is performing experiments at the Macdonald Laboratory and will use the laboratory's expertise in imaging molecules.

"A molecule is more complex than an atom, which typically means its reaction dynamics are richer," Johnson said. "We are excited to pursue correlated electron dynamics at the next level of complexity to further understand them."

Itzik Ben-Itzhak | EurekAlert!
Further information:
http://www.k-state.edu
http://www.k-state.edu/media/newsreleases/may12/attosecond51512.html

More articles from Physics and Astronomy:

nachricht Squeezing light at the nanoscale
17.06.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht The Fraunhofer IAF is a »Landmark in the Land of Ideas«
15.06.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>