Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

For the First Time Ever, Scientists Watch an Atom’s Electrons Moving in Real Time

05.08.2010
An international team of scientists led by groups from the Max Planck Institute of Quantum Optics (MPQ) in Garching, Germany, and from the U.S. Department of Energy’s Lawrence Berkeley National Laboratory and the University of California at Berkeley has used ultrashort flashes of laser light to directly observe the movement of an atom’s outer electrons for the first time.

Through a process called attosecond absorption spectroscopy, researchers were able to time the oscillations between simultaneously produced quantum states of valence electrons with great precision. These oscillations drive electron motion.

“With a simple system of krypton atoms, we demonstrated, for the first time, that we can measure transient absorption dynamics with attosecond pulses,” says Stephen Leone of Berkeley Lab’s Chemical Sciences Division, who is also a professor of chemistry and physics at UC Berkeley. “This revealed details of a type of electronic motion – coherent superposition – that can control properties in many systems.”

Leone cites recent work by the Graham Fleming group at Berkeley on the crucial role of coherent dynamics in photosynthesis as an example of its importance, noting that “the method developed by our team for exploring coherent dynamics has never before been available to researchers. It’s truly general and can be applied to attosecond electronic dynamics problems in the physics and chemistry of liquids, solids, biological systems, everything.”

The team’s demonstration of attosecond absorption spectroscopy began by first ionizing krypton atoms, removing one or more outer valence electrons with pulses of near-infrared laser light that were typically measured on timescales of a few femtoseconds (a femtosecond is 10-15 second, a quadrillionth of a second). Then, with far shorter pulses of extreme ultraviolet light on the 100-attosecond timescale (an attosecond is 10-18 second, a quintillionth of a second), they were able to precisely measure the effects on the valence electron orbitals.

The results of the pioneering measurements performed at MPQ by the Leone and Krausz groups and their colleagues are reported in the August 5 issue of the journal Nature.

Parsing the fine points of valence electron motion

Valence electrons control how atoms bond with other atoms to form molecules or crystal structures, and how these bonds break and reform during chemical reactions. Changes in molecular structures occur on the scale of many femtoseconds and have often been observed with femtosecond spectroscopy, in which both Leone and Krausz are pioneers.

Zhi-Heng Loh of Leone’s group at Berkeley Lab and UC Berkeley worked with Eleftherios Goulielmakis of Krausz’s group to perform the experiments at MPQ. By firing a femtosecond pulse of infrared laser light through a chamber filled with krypton gas, atoms in the path of the beam were ionized by the loss of from one to three valence electrons from their outermost shells.

The experimenters separately generated extreme-ultraviolet attosecond pulses (using the technique called “high harmonic generation”) and sent the beam of attosecond probe pulses through the krypton gas on the same path as the near-infrared pump pulses.

By varying the time delay between the pump pulse and the probe pulse, the researchers found that subsequent states of increasing ionization were being produced at regular intervals, which turned out to be approximately equal to the time for a half cycle of the pump pulse. (The pulse is only a few cycles long; the time from crest to crest is a full cycle, and from crest to trough is a half cycle.)

“The femtosecond pulse produces a strong electromagnetic field, and ionization takes place with every half cycle of the pulse,” Leone says. “Therefore little bursts of ions are coming out every half cycle.”

Although expected from theory, these isolated bursts were not resolved in the experiment. The attosecond pulses, however, could precisely measure the production of the ionization, because ionization – the removal of one or more electrons – leaves gaps or “holes,” unfilled orbitals that the ultrashort pulses can probe.

The attosecond pulses do so by exciting electrons from lower energy orbitals to fill the gap in krypton’s outermost orbital – a direct result of the absorption of the transient attosecond pulses by the atoms. After the “long” femtosecond pump pulse liberates an electron from outermost orbital (designated 4p), the short probe pulse boosts an electron from an inner orbital (designated 3d), leaving behind a hole in that orbital while sensing the dynamics of the outermost orbital.

In singly charged krypton ions, two electronic states are formed. A wave-packet of electronic motion is observed between these two states, indicating that the ionization process forms the two states in what’s known as quantum coherence.

Says Leone, “There is a continual ‘orbital flopping’ between the two states, which interfere with each other. A high degree of interference is called coherence.” Thus when the attosecond probe pulse clocks the outer valence orbitals, it is really clocking the high degree of coherence in the orbital motion caused by ionization.

Indispensable attosecond pulses

“When the bursts of ions are made quickly enough, with just a few cycles of the ionization pulse, we observe a high degree of coherence,” Leone says. “Theoretically, however, with longer ionization pulses the production of the ions gets out of phase with the period of the electron wave-packet motion, as our work showed.”

So after just a few cycles of the pump pulse, the coherence is washed out. Thus, says Leone, “Without very short, attosecond-scale probe pulses, we could not have measured the degree of coherence that resulted from ionization.”

The physical demonstration of attosecond transient absorption by the combined efforts of the Leone and Krausz groups and their colleagues will, in Leone’s words, “allow us to unravel processes within and among atoms, molecules, and crystals on the electronic timescale” – processes that previously could only be hinted at with studies on the comparatively languorous femtosecond timescale.

“Real-time observation of valence electron motion,” by Eleftherios Goulielmakis, Zhi-Heng Loh, Adrian Wirth, Robin Santra, Nina Rohringer, Vladislav Yakovlev, Sergey Zherebtsov, Thomas Pfeifer, Abdallah Azzeer, Matthias Kling, Stephen Leone, and Ferenc Krausz, appears in the 5 August 2010 issue of the journal Nature. This work was supported by the Max Planck Society, King Saud University, and the Munich Center for Advanced Photonics. Stephen Leone’s group is supported by the Air Force Office of Scientific Research, the National Science Foundation, and U.S. Department of Energy’s Office of Science. Theoretical modeling was led by Robin Santra, who is supported by DOE’s Office of Science.

Lawrence Berkeley National Laboratory provides solutions to the world’s most urgent scientific challenges including clean energy, climate change, human health, novel materials, and a better understanding of matter and force in the universe. It is a world leader in improving our lives and knowledge of the world around us through innovative science, advanced computing, and technology that makes a difference. Berkeley Lab is a U.S. Department of Energy (DOE) national laboratory managed by the University of California for the DOE Office of Science.

Paul Preuss | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>