Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

No time for change: Cosmic weight watching reveals black hole-galaxy history

30.09.2011
Using state-of-the-art technology and sophisticated data analysis tools, a team of astronomers from the Max Planck Institute for Astronomy has developed a new and powerful technique to directly determine the mass of an active galaxy at a distance of nearly 9 billion light-years from Earth.

This pioneering method promises a new approach for studying the co-evolution of galaxies and their central black holes. First results indicate that for galaxies, the best part of cosmic history was not a time of sweeping changes.


Colours in this image of the galaxy J090543.56+043347.3 indicate whether there is gas moving towards us or away from us, and at what speed. Using this information, the researchers reconstructed the galaxy's dynamical mass. The star shape indicates the position of the galaxy's active nucleus; the surrounding contour lines indicate brightness levels for light emitted by the nucleus. Image: K. J. Inskip/MPIA

One of the most intriguing developments in astronomy over the last few decades is the realization that not only do most galaxies contain central black holes of gigantic size, but also that the mass of these central black holes are directly related to the mass of their host galaxies[1]. This correlation is predicted by the current standard model of galaxy evolution, the so-called hierarchical model, as astronomers from the Max Planck Institute for Astronomy have recently shown [2].

When astronomers look out to greater and greater distances, they look further and further into the past [3]. Investigating this black hole-galaxy mass correlation at different distances, and thus at different times in cosmic history, allows astronomers to study galaxy and black hole evolution in action.

For galaxies further away than 5 billion light-years (corresponding to a redshift of z > 0.5 [4]), such studies face considerable difficulties. The typical objects of study are so-called active galaxies, and there are well-established methods to estimate the mass of such a galaxy's central black hole [5]. It is the galaxy's mass itself that is the challenge: At such distances, standard methods of estimating a galaxy's mass become exceedingly uncertain or fail altogether.

Now, a team of astronomers from the Max Planck Institute for Astronomy, led by Dr Katherine Inskip, has, for the first time, succeeded in directly "weighing" both a galaxy and its central black hole at such a great distance using a sophisticated and novel method [6]. The galaxy, known to astronomers by the number J090543.56+043347.3 (which encodes the galaxy's position in the sky) has a distance of 8.8 billion light-years from Earth (redshift z = 1.3).

The astronomers succeeded in measuring directly the so-called dynamical mass of this active galaxy. The key idea is the following: A galaxy's stars and gas clouds orbit the galactic centre; for instance, our Sun orbits the centre of the Milky Way galaxy once every 250 million years. The stars' different orbital speeds are a direct function of the galaxy's mass distribution. Determine orbital speeds and you can determine the galaxy's total mass [7].

This is much easier said than done. In order to secure their measurement, the cosmic weightwatchers had to pull out all the stops of observational astronomy before finally obtaining a reliable value for the dynamical mass of J090543.56+043347.3. Combining this result with the mass value of the galaxy's central black hole, which the researchers measured from the same dataset, the result is the same that would be expected for a present-day galaxy. Apparently, nothing major has changed between now and then: At least out to this distance, 9 billion years into the past, the correlation between galaxies and their black holes appears to be the same as for their modern-day counterparts.

Inskip and her colleagues are already hard at work to expand their novel kind of analysis to a larger set of 15 further galaxies. If this confirms their conclusions from J090543.56+043347.3, that would indicate that, over the past 9 billion years – for more than half of the age of our Universe! – most galaxies have lived comparatively boring lives, subject to only very limited and slow change.

Contact information

Katherine Inskip (lead author)
Max Planck Institute for Astronomy
E-mail: inskip@mpia.de
Knud Jahnke (co-author)
Max Planck Institute for Astronomy
Phone: (+49|0) 6221 – 528 398
E-mail: jahnke@mpia.de
Markus Pössel (public relations)
Max Planck Institute for Astronomy
Phone: (+49|0) 6221 – 528 261
E-mail: pr@mpia.de
Background information
The work described here is being published as K. J. Inskip, K. Jahnke, H.-W. Rix & G. van de Ven, "Resolving the Dynamical Mass of a z ~ 1.3 Quasi-stellar Object Host Galaxy Using SINFONI and Laser Guide Star Assisted Adaptive Optics" in the October 1 edition of the Astrophysical Journal, Volume 739, Issue 2, article id. 90 (2011).

Endnotes

[1] There are different characteristic masses for a galaxy, and there is currently no consensus about whether the key property related to the black hole mass is the host galaxy's total mass, the mass of its stars (leaving aside dark matter and interstellar gas), or its bulge mass (the mass contained in a central thickening observed in many galaxies known as their bulge).

[2] In the hierarchical model of galaxy evolution, galaxies evolve and grow by ingesting smaller galaxies, or through mergers with galaxies of comparable size. The prediction is published as Jahnke & Macciò 2011, Astrophysical Journal, vol. 734, article ID 92

[3] This is because light travels at a finite speed. Every time we look at the Sun, we see our mother star as it was eight minutes ago, simply because it took the light we perceive eight minutes to travel from the Sun to Earth.

[4] In an expanding universe, a distant galaxy's distance from us and the redshift of that galaxy's light (the amount that the light is shifted towards lower frequencies) are directly related. Although distances are very hard to measure directly, it is typically straightforward to determine a galaxy's redshift, and so astronomers frequently quote a galaxy's redshift, z, as an (indirect) measure of its distance.

[5] In active galaxies, the central black hole habitually swallows surrounding matter, emitting enormous amounts of electromagnetic radiation in the process. Well-established methods allow astronomers to determine the black hole's mass by studying specific properties of this radiation.

[6] Both in the title and here, "weighing" is a reference to the standard everyday method for determining a body's mass (a measure for the amount of matter contained within the body) by determining its weight (that is, measuring the force by which the Earth's gravity pulls the body downwards). The concept of weight is not applicable to large celestial objects such as stars or galaxies; the work described in this release is strictly about determining a specific galaxy's mass.

[7] There is a simple analogue within our own Solar System: Kepler's 3rd Law of Planetary Motion states that a planet's orbital period T is related to its mean distance from the Sun a, the Sun's mass M and the gravitational constant by T2 = 4 π2a3/MG. Once you know the planet's orbit and its distance from the Sun, you can determine the Sun's mass. For much closer galaxies than the one examined here, studies of dynamic mass are a common astronomical tool. Notably, such studies are a key part of the evidence for the existence of Dark Matter

Dr. Markus Pössel | Max-Planck-Institut
Further information:
http://www.mpia.de/Public/menu_q2.php?Aktuelles/PR/2011/PR110930/PR_110930_en.html

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>