Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

No time for change: Cosmic weight watching reveals black hole-galaxy history

30.09.2011
Using state-of-the-art technology and sophisticated data analysis tools, a team of astronomers from the Max Planck Institute for Astronomy has developed a new and powerful technique to directly determine the mass of an active galaxy at a distance of nearly 9 billion light-years from Earth.

This pioneering method promises a new approach for studying the co-evolution of galaxies and their central black holes. First results indicate that for galaxies, the best part of cosmic history was not a time of sweeping changes.


Colours in this image of the galaxy J090543.56+043347.3 indicate whether there is gas moving towards us or away from us, and at what speed. Using this information, the researchers reconstructed the galaxy's dynamical mass. The star shape indicates the position of the galaxy's active nucleus; the surrounding contour lines indicate brightness levels for light emitted by the nucleus. Image: K. J. Inskip/MPIA

One of the most intriguing developments in astronomy over the last few decades is the realization that not only do most galaxies contain central black holes of gigantic size, but also that the mass of these central black holes are directly related to the mass of their host galaxies[1]. This correlation is predicted by the current standard model of galaxy evolution, the so-called hierarchical model, as astronomers from the Max Planck Institute for Astronomy have recently shown [2].

When astronomers look out to greater and greater distances, they look further and further into the past [3]. Investigating this black hole-galaxy mass correlation at different distances, and thus at different times in cosmic history, allows astronomers to study galaxy and black hole evolution in action.

For galaxies further away than 5 billion light-years (corresponding to a redshift of z > 0.5 [4]), such studies face considerable difficulties. The typical objects of study are so-called active galaxies, and there are well-established methods to estimate the mass of such a galaxy's central black hole [5]. It is the galaxy's mass itself that is the challenge: At such distances, standard methods of estimating a galaxy's mass become exceedingly uncertain or fail altogether.

Now, a team of astronomers from the Max Planck Institute for Astronomy, led by Dr Katherine Inskip, has, for the first time, succeeded in directly "weighing" both a galaxy and its central black hole at such a great distance using a sophisticated and novel method [6]. The galaxy, known to astronomers by the number J090543.56+043347.3 (which encodes the galaxy's position in the sky) has a distance of 8.8 billion light-years from Earth (redshift z = 1.3).

The astronomers succeeded in measuring directly the so-called dynamical mass of this active galaxy. The key idea is the following: A galaxy's stars and gas clouds orbit the galactic centre; for instance, our Sun orbits the centre of the Milky Way galaxy once every 250 million years. The stars' different orbital speeds are a direct function of the galaxy's mass distribution. Determine orbital speeds and you can determine the galaxy's total mass [7].

This is much easier said than done. In order to secure their measurement, the cosmic weightwatchers had to pull out all the stops of observational astronomy before finally obtaining a reliable value for the dynamical mass of J090543.56+043347.3. Combining this result with the mass value of the galaxy's central black hole, which the researchers measured from the same dataset, the result is the same that would be expected for a present-day galaxy. Apparently, nothing major has changed between now and then: At least out to this distance, 9 billion years into the past, the correlation between galaxies and their black holes appears to be the same as for their modern-day counterparts.

Inskip and her colleagues are already hard at work to expand their novel kind of analysis to a larger set of 15 further galaxies. If this confirms their conclusions from J090543.56+043347.3, that would indicate that, over the past 9 billion years – for more than half of the age of our Universe! – most galaxies have lived comparatively boring lives, subject to only very limited and slow change.

Contact information

Katherine Inskip (lead author)
Max Planck Institute for Astronomy
E-mail: inskip@mpia.de
Knud Jahnke (co-author)
Max Planck Institute for Astronomy
Phone: (+49|0) 6221 – 528 398
E-mail: jahnke@mpia.de
Markus Pössel (public relations)
Max Planck Institute for Astronomy
Phone: (+49|0) 6221 – 528 261
E-mail: pr@mpia.de
Background information
The work described here is being published as K. J. Inskip, K. Jahnke, H.-W. Rix & G. van de Ven, "Resolving the Dynamical Mass of a z ~ 1.3 Quasi-stellar Object Host Galaxy Using SINFONI and Laser Guide Star Assisted Adaptive Optics" in the October 1 edition of the Astrophysical Journal, Volume 739, Issue 2, article id. 90 (2011).

Endnotes

[1] There are different characteristic masses for a galaxy, and there is currently no consensus about whether the key property related to the black hole mass is the host galaxy's total mass, the mass of its stars (leaving aside dark matter and interstellar gas), or its bulge mass (the mass contained in a central thickening observed in many galaxies known as their bulge).

[2] In the hierarchical model of galaxy evolution, galaxies evolve and grow by ingesting smaller galaxies, or through mergers with galaxies of comparable size. The prediction is published as Jahnke & Macciò 2011, Astrophysical Journal, vol. 734, article ID 92

[3] This is because light travels at a finite speed. Every time we look at the Sun, we see our mother star as it was eight minutes ago, simply because it took the light we perceive eight minutes to travel from the Sun to Earth.

[4] In an expanding universe, a distant galaxy's distance from us and the redshift of that galaxy's light (the amount that the light is shifted towards lower frequencies) are directly related. Although distances are very hard to measure directly, it is typically straightforward to determine a galaxy's redshift, and so astronomers frequently quote a galaxy's redshift, z, as an (indirect) measure of its distance.

[5] In active galaxies, the central black hole habitually swallows surrounding matter, emitting enormous amounts of electromagnetic radiation in the process. Well-established methods allow astronomers to determine the black hole's mass by studying specific properties of this radiation.

[6] Both in the title and here, "weighing" is a reference to the standard everyday method for determining a body's mass (a measure for the amount of matter contained within the body) by determining its weight (that is, measuring the force by which the Earth's gravity pulls the body downwards). The concept of weight is not applicable to large celestial objects such as stars or galaxies; the work described in this release is strictly about determining a specific galaxy's mass.

[7] There is a simple analogue within our own Solar System: Kepler's 3rd Law of Planetary Motion states that a planet's orbital period T is related to its mean distance from the Sun a, the Sun's mass M and the gravitational constant by T2 = 4 π2a3/MG. Once you know the planet's orbit and its distance from the Sun, you can determine the Sun's mass. For much closer galaxies than the one examined here, studies of dynamic mass are a common astronomical tool. Notably, such studies are a key part of the evidence for the existence of Dark Matter

Dr. Markus Pössel | Max-Planck-Institut
Further information:
http://www.mpia.de/Public/menu_q2.php?Aktuelles/PR/2011/PR110930/PR_110930_en.html

More articles from Physics and Astronomy:

nachricht NASA laser communications to provide Orion faster connections
30.03.2017 | NASA/Goddard Space Flight Center

nachricht Pinball at the atomic level
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>