Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


No time for change: Cosmic weight watching reveals black hole-galaxy history

Using state-of-the-art technology and sophisticated data analysis tools, a team of astronomers from the Max Planck Institute for Astronomy has developed a new and powerful technique to directly determine the mass of an active galaxy at a distance of nearly 9 billion light-years from Earth.

This pioneering method promises a new approach for studying the co-evolution of galaxies and their central black holes. First results indicate that for galaxies, the best part of cosmic history was not a time of sweeping changes.

Colours in this image of the galaxy J090543.56+043347.3 indicate whether there is gas moving towards us or away from us, and at what speed. Using this information, the researchers reconstructed the galaxy's dynamical mass. The star shape indicates the position of the galaxy's active nucleus; the surrounding contour lines indicate brightness levels for light emitted by the nucleus. Image: K. J. Inskip/MPIA

One of the most intriguing developments in astronomy over the last few decades is the realization that not only do most galaxies contain central black holes of gigantic size, but also that the mass of these central black holes are directly related to the mass of their host galaxies[1]. This correlation is predicted by the current standard model of galaxy evolution, the so-called hierarchical model, as astronomers from the Max Planck Institute for Astronomy have recently shown [2].

When astronomers look out to greater and greater distances, they look further and further into the past [3]. Investigating this black hole-galaxy mass correlation at different distances, and thus at different times in cosmic history, allows astronomers to study galaxy and black hole evolution in action.

For galaxies further away than 5 billion light-years (corresponding to a redshift of z > 0.5 [4]), such studies face considerable difficulties. The typical objects of study are so-called active galaxies, and there are well-established methods to estimate the mass of such a galaxy's central black hole [5]. It is the galaxy's mass itself that is the challenge: At such distances, standard methods of estimating a galaxy's mass become exceedingly uncertain or fail altogether.

Now, a team of astronomers from the Max Planck Institute for Astronomy, led by Dr Katherine Inskip, has, for the first time, succeeded in directly "weighing" both a galaxy and its central black hole at such a great distance using a sophisticated and novel method [6]. The galaxy, known to astronomers by the number J090543.56+043347.3 (which encodes the galaxy's position in the sky) has a distance of 8.8 billion light-years from Earth (redshift z = 1.3).

The astronomers succeeded in measuring directly the so-called dynamical mass of this active galaxy. The key idea is the following: A galaxy's stars and gas clouds orbit the galactic centre; for instance, our Sun orbits the centre of the Milky Way galaxy once every 250 million years. The stars' different orbital speeds are a direct function of the galaxy's mass distribution. Determine orbital speeds and you can determine the galaxy's total mass [7].

This is much easier said than done. In order to secure their measurement, the cosmic weightwatchers had to pull out all the stops of observational astronomy before finally obtaining a reliable value for the dynamical mass of J090543.56+043347.3. Combining this result with the mass value of the galaxy's central black hole, which the researchers measured from the same dataset, the result is the same that would be expected for a present-day galaxy. Apparently, nothing major has changed between now and then: At least out to this distance, 9 billion years into the past, the correlation between galaxies and their black holes appears to be the same as for their modern-day counterparts.

Inskip and her colleagues are already hard at work to expand their novel kind of analysis to a larger set of 15 further galaxies. If this confirms their conclusions from J090543.56+043347.3, that would indicate that, over the past 9 billion years – for more than half of the age of our Universe! – most galaxies have lived comparatively boring lives, subject to only very limited and slow change.

Contact information

Katherine Inskip (lead author)
Max Planck Institute for Astronomy
Knud Jahnke (co-author)
Max Planck Institute for Astronomy
Phone: (+49|0) 6221 – 528 398
Markus Pössel (public relations)
Max Planck Institute for Astronomy
Phone: (+49|0) 6221 – 528 261
Background information
The work described here is being published as K. J. Inskip, K. Jahnke, H.-W. Rix & G. van de Ven, "Resolving the Dynamical Mass of a z ~ 1.3 Quasi-stellar Object Host Galaxy Using SINFONI and Laser Guide Star Assisted Adaptive Optics" in the October 1 edition of the Astrophysical Journal, Volume 739, Issue 2, article id. 90 (2011).


[1] There are different characteristic masses for a galaxy, and there is currently no consensus about whether the key property related to the black hole mass is the host galaxy's total mass, the mass of its stars (leaving aside dark matter and interstellar gas), or its bulge mass (the mass contained in a central thickening observed in many galaxies known as their bulge).

[2] In the hierarchical model of galaxy evolution, galaxies evolve and grow by ingesting smaller galaxies, or through mergers with galaxies of comparable size. The prediction is published as Jahnke & Macciò 2011, Astrophysical Journal, vol. 734, article ID 92

[3] This is because light travels at a finite speed. Every time we look at the Sun, we see our mother star as it was eight minutes ago, simply because it took the light we perceive eight minutes to travel from the Sun to Earth.

[4] In an expanding universe, a distant galaxy's distance from us and the redshift of that galaxy's light (the amount that the light is shifted towards lower frequencies) are directly related. Although distances are very hard to measure directly, it is typically straightforward to determine a galaxy's redshift, and so astronomers frequently quote a galaxy's redshift, z, as an (indirect) measure of its distance.

[5] In active galaxies, the central black hole habitually swallows surrounding matter, emitting enormous amounts of electromagnetic radiation in the process. Well-established methods allow astronomers to determine the black hole's mass by studying specific properties of this radiation.

[6] Both in the title and here, "weighing" is a reference to the standard everyday method for determining a body's mass (a measure for the amount of matter contained within the body) by determining its weight (that is, measuring the force by which the Earth's gravity pulls the body downwards). The concept of weight is not applicable to large celestial objects such as stars or galaxies; the work described in this release is strictly about determining a specific galaxy's mass.

[7] There is a simple analogue within our own Solar System: Kepler's 3rd Law of Planetary Motion states that a planet's orbital period T is related to its mean distance from the Sun a, the Sun's mass M and the gravitational constant by T2 = 4 π2a3/MG. Once you know the planet's orbit and its distance from the Sun, you can determine the Sun's mass. For much closer galaxies than the one examined here, studies of dynamic mass are a common astronomical tool. Notably, such studies are a key part of the evidence for the existence of Dark Matter

Dr. Markus Pössel | Max-Planck-Institut
Further information:

More articles from Physics and Astronomy:

nachricht Hubble captures massive dead disk galaxy that challenges theories of galaxy evolution
22.06.2017 | NASA/Goddard Space Flight Center

nachricht New femto-camera with quadrillion fractions of a second resolution
22.06.2017 | ITMO University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>



Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

Latest News

Hubble captures massive dead disk galaxy that challenges theories of galaxy evolution

22.06.2017 | Physics and Astronomy

New femto-camera with quadrillion fractions of a second resolution

22.06.2017 | Physics and Astronomy

Rice U. chemists create 3-D printed graphene foam

22.06.2017 | Materials Sciences

More VideoLinks >>>