Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Tides Have Major Impact on Planet Habitability

Astronomers searching for rocky planets that could support life in other solar systems should look outside, as well as within, the so-called "habitable zone," University of Arizona planetary scientists say.

Planets too close to their stars are roasted. Planets too far from their stars are frozen. In between, research models show, there's a habitable zone where planet temperatures approximate Earth's. Any rocky planets in this just-right Goldilocks zone could be awash in liquid water, a requisite for life as we know it, theorists say.

New research by Brian Jackson, Rory Barnes and Richard Greenberg of UA's Lunar and Planetary Laboratory shows that tides can play a major role in heating terrestrial planets, creating hellish conditions on rocky alien worlds that otherwise might be livable. And just the other way, tidal heat can also create conditions favorable to life on planets that would otherwise be unlivable.

Jackson presented the research Saturday at the 40th annual meeting of the Division of Planetary Sciences in Ithaca, N.Y. His talk is titled "Tidal Heating of Extrasolar Terrestrial-scale Planets and Constraints on Habitability." The research will be published soon in the Monthly Notices of the Royal Astronomical Society.

Our own solar system is something of an anomaly, in that its planets move in relatively quiescent, circular orbits around the sun. Most extrasolar planets found to date have highly elongated orbits. During each orbit, the planet is stretched most by tides when it is near the star, and less when the planet is farther from its star. The resulting friction generates internal heat, which drives the planet's geophysical processes.

If the recently discovered "super-Earths" ? extrasolar planets only 2-to-10 times as massive as Earth ? are indeed terrestrial, tidal heating may be great enough to melt them, or at least produce volcanism on par with Jupiter's moon, Io, "dimming their prospects for habitability," Jackson said. So some of the recently discovered super-Earths may be more like "super-Ios," he said. The lo moon is the most volcanically active body in our solar system.

"Tidal heating scales with planet mass, so we expect that most easily detectable super-Earths will be dominated by volcanic activity," Jackson said. "That's one of our first conclusions from this work, that the first Earth-like planets found are probably going to be strongly heated and have big volcanoes. Even if Earth-like planets are found within the habitable zone, they may not be habitable because they will be overwhelmed by this tidal heating."

Tidal heating may also create habitable conditions on planets that otherwise are too small or too cold to support life, Jackson said. Tidal heating can enhance outgassing of volatiles that contribute or replenish a planet's atmosphere through volcanism. Tidal heating also can generate sub-surface liquid oceans on water-rich rocky planets that would otherwise be frozen, just as tidal heating is believed to warm a sub-surface liquid water ocean on Jupiter's moon Europa.

Also, tidal heating can drive plate tectonics, a mechanism that checks excessive carbon dioxide from accumulating in a planetary atmosphere, producing the kind of deadly greenhouse atmosphere found on Venus.

"Our study shows that tidal heating could produce enough heat to drive plate tectonics for billions of years, long enough for life to appear and flourish,"

Jackson said.

Brian Jackson (520-626-3154; Rory Barnes (520-626-3154; Richard Greenberg (520-621-6950;

Lori Stiles | University of Arizona
Further information:

Further reports about: Earth-like planets Planet Planetary Tides plate tectonics rocky planet solar system

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>