Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tides Have Major Impact on Planet Habitability

14.10.2008
Astronomers searching for rocky planets that could support life in other solar systems should look outside, as well as within, the so-called "habitable zone," University of Arizona planetary scientists say.

Planets too close to their stars are roasted. Planets too far from their stars are frozen. In between, research models show, there's a habitable zone where planet temperatures approximate Earth's. Any rocky planets in this just-right Goldilocks zone could be awash in liquid water, a requisite for life as we know it, theorists say.

New research by Brian Jackson, Rory Barnes and Richard Greenberg of UA's Lunar and Planetary Laboratory shows that tides can play a major role in heating terrestrial planets, creating hellish conditions on rocky alien worlds that otherwise might be livable. And just the other way, tidal heat can also create conditions favorable to life on planets that would otherwise be unlivable.

Jackson presented the research Saturday at the 40th annual meeting of the Division of Planetary Sciences in Ithaca, N.Y. His talk is titled "Tidal Heating of Extrasolar Terrestrial-scale Planets and Constraints on Habitability." The research will be published soon in the Monthly Notices of the Royal Astronomical Society.

Our own solar system is something of an anomaly, in that its planets move in relatively quiescent, circular orbits around the sun. Most extrasolar planets found to date have highly elongated orbits. During each orbit, the planet is stretched most by tides when it is near the star, and less when the planet is farther from its star. The resulting friction generates internal heat, which drives the planet's geophysical processes.

If the recently discovered "super-Earths" ? extrasolar planets only 2-to-10 times as massive as Earth ? are indeed terrestrial, tidal heating may be great enough to melt them, or at least produce volcanism on par with Jupiter's moon, Io, "dimming their prospects for habitability," Jackson said. So some of the recently discovered super-Earths may be more like "super-Ios," he said. The lo moon is the most volcanically active body in our solar system.

"Tidal heating scales with planet mass, so we expect that most easily detectable super-Earths will be dominated by volcanic activity," Jackson said. "That's one of our first conclusions from this work, that the first Earth-like planets found are probably going to be strongly heated and have big volcanoes. Even if Earth-like planets are found within the habitable zone, they may not be habitable because they will be overwhelmed by this tidal heating."

Tidal heating may also create habitable conditions on planets that otherwise are too small or too cold to support life, Jackson said. Tidal heating can enhance outgassing of volatiles that contribute or replenish a planet's atmosphere through volcanism. Tidal heating also can generate sub-surface liquid oceans on water-rich rocky planets that would otherwise be frozen, just as tidal heating is believed to warm a sub-surface liquid water ocean on Jupiter's moon Europa.

Also, tidal heating can drive plate tectonics, a mechanism that checks excessive carbon dioxide from accumulating in a planetary atmosphere, producing the kind of deadly greenhouse atmosphere found on Venus.

"Our study shows that tidal heating could produce enough heat to drive plate tectonics for billions of years, long enough for life to appear and flourish,"

Jackson said.

SCIENCE CONTACTS:
Brian Jackson (520-626-3154; bjackson@lpl.arizona.edu) Rory Barnes (520-626-3154; rory@lpl.arizona.edu) Richard Greenberg (520-621-6950; greenberg@lpl.arizona.edu)

Lori Stiles | University of Arizona
Further information:
http://www.arizona.edu

Further reports about: Earth-like planets Planet Planetary Tides plate tectonics rocky planet solar system

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>