Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tides Have Major Impact on Planet Habitability

14.10.2008
Astronomers searching for rocky planets that could support life in other solar systems should look outside, as well as within, the so-called "habitable zone," University of Arizona planetary scientists say.

Planets too close to their stars are roasted. Planets too far from their stars are frozen. In between, research models show, there's a habitable zone where planet temperatures approximate Earth's. Any rocky planets in this just-right Goldilocks zone could be awash in liquid water, a requisite for life as we know it, theorists say.

New research by Brian Jackson, Rory Barnes and Richard Greenberg of UA's Lunar and Planetary Laboratory shows that tides can play a major role in heating terrestrial planets, creating hellish conditions on rocky alien worlds that otherwise might be livable. And just the other way, tidal heat can also create conditions favorable to life on planets that would otherwise be unlivable.

Jackson presented the research Saturday at the 40th annual meeting of the Division of Planetary Sciences in Ithaca, N.Y. His talk is titled "Tidal Heating of Extrasolar Terrestrial-scale Planets and Constraints on Habitability." The research will be published soon in the Monthly Notices of the Royal Astronomical Society.

Our own solar system is something of an anomaly, in that its planets move in relatively quiescent, circular orbits around the sun. Most extrasolar planets found to date have highly elongated orbits. During each orbit, the planet is stretched most by tides when it is near the star, and less when the planet is farther from its star. The resulting friction generates internal heat, which drives the planet's geophysical processes.

If the recently discovered "super-Earths" ? extrasolar planets only 2-to-10 times as massive as Earth ? are indeed terrestrial, tidal heating may be great enough to melt them, or at least produce volcanism on par with Jupiter's moon, Io, "dimming their prospects for habitability," Jackson said. So some of the recently discovered super-Earths may be more like "super-Ios," he said. The lo moon is the most volcanically active body in our solar system.

"Tidal heating scales with planet mass, so we expect that most easily detectable super-Earths will be dominated by volcanic activity," Jackson said. "That's one of our first conclusions from this work, that the first Earth-like planets found are probably going to be strongly heated and have big volcanoes. Even if Earth-like planets are found within the habitable zone, they may not be habitable because they will be overwhelmed by this tidal heating."

Tidal heating may also create habitable conditions on planets that otherwise are too small or too cold to support life, Jackson said. Tidal heating can enhance outgassing of volatiles that contribute or replenish a planet's atmosphere through volcanism. Tidal heating also can generate sub-surface liquid oceans on water-rich rocky planets that would otherwise be frozen, just as tidal heating is believed to warm a sub-surface liquid water ocean on Jupiter's moon Europa.

Also, tidal heating can drive plate tectonics, a mechanism that checks excessive carbon dioxide from accumulating in a planetary atmosphere, producing the kind of deadly greenhouse atmosphere found on Venus.

"Our study shows that tidal heating could produce enough heat to drive plate tectonics for billions of years, long enough for life to appear and flourish,"

Jackson said.

SCIENCE CONTACTS:
Brian Jackson (520-626-3154; bjackson@lpl.arizona.edu) Rory Barnes (520-626-3154; rory@lpl.arizona.edu) Richard Greenberg (520-621-6950; greenberg@lpl.arizona.edu)

Lori Stiles | University of Arizona
Further information:
http://www.arizona.edu

Further reports about: Earth-like planets Planet Planetary Tides plate tectonics rocky planet solar system

More articles from Physics and Astronomy:

nachricht NASA mission surfs through waves in space to understand space weather
25.07.2017 | NASA/Goddard Space Flight Center

nachricht A new level of magnetic saturation
25.07.2017 | Georg-August-Universität Göttingen

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>