Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Throwing light on the dark side of the Universe

21.10.2008
Although we may believe humans know a lot about the Universe, there are still a lot of phenomena to be explained. A team of cosmologists from the University of the Basque Country are searching for the model that best explains the evolution of the Universe.

We usually have an image of scientists who study the Universe doing so peering through a telescope. And, effectively, this is what astrophysicists do: gather data about the observable phenomena of the Universe.

However, in order to interpret this data, i.e. to explain the majority of the phenomena occurring in the Universe, complicated calculations with a computer are required and which have to be based on appropriate mathematical models. This is what the Gravitation and Cosmology research team at the University of the Basque Country (UPV/EHU) is involved in: analysing models capable of explaining the evolution of the Universe.

Supernovas, witnesses to acceleration

One of the phenomena that standard models of physics have not yet been able to explain is that of the accelerated expansion of the Universe. Although Einstein proposed a static model to describe the Cosmos, today it is well known, thanks to supernovas amongst other things, that it is, in fact, expanding. Supernovas are very brilliant stellar explosions that, precisely due to this, provide useful data for exploring very distant regions of the Universe. By measuring the quantity of light that gets to us from a supernova, we can calculate its distance from us, and its colour indicates the speed at which it is distancing itself from us – the more reddish it is, the faster it is travelling. In other words, comparing two supernovas, the one that is distancing itself more slowly from us is a more bluish colour. According to observations by astrophysiscists, besides supernovas distancing themselves from us, they are doing so more and more rapidly, i.e. distancing themselves at an accelerated velocity, just like the rest of the material of the Universe.

Looking for dark energy

The energy known to exist in the Universe, however, is not sufficient to cause such acceleration. Thus, the theory most widely accepted within the scientific community is that there exists a ‘dark energy’, i.e. an energy that we cannot detect except by the gravitational force that it produces. In fact, it is believed that 73% of the energy of the Universe is dark. The dark energy debate is not just any theory: its existence has not been proved but, without it, standard models of physics would not be able to explain many of the phenomena occurring in the Universe.

So, what is dark energy exactly? What are its characteristics and have these properties always been the same or have they changed over time? These are questions, amongst others, that researchers at the Faculty of Science and Technology at the UPV/EHU, under the direction of Dr. Alexander Feinstein, are seeking to answer.

The unique characteristic of dark energy known to us is that it possesses repulsive gravitational force. That is, unlike the gravity we know on Earth, this force tends to distance stars, galaxies and the rest of the structures of the Universe from each other. This would explain why the expansion of the Universe is not constant, but accelerated. Nevertheless, this phenomenon can only be detected when achieving observationally enormous, almost unimaginable distances. This is why it is so difficult to understand the nature of dark energy.

The theory of phantom energy

To what point can the Universe expand? If this repulsive force is ever more intense, might it be infinite? This is one of the problems that the UPV/EHU researchers are focusing on. Such powerful dark energy is known as phantom energy, with which the Universe is able to expand to such an extent that the structures we know today would disappear.

This research group considers that the phantom energy model may be the most suitable to explain the accelerated expansion of the Universe. Amongst other things, the team has come to this conclusion after analysing the distribution of galaxies and the background microwave radiation which has inundated all of the Cosmos since shortly after the Big Bang. These waves travel in every direction and enable the exploration of what occurred at tremendously remote instants in time, moments close to the start of it all.

Lucía Álvarez | alfa
Further information:
http://www.elhuyar.com
http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=1906&hizk=I

Further reports about: Cosmos Supernovas Telescope Universe brilliant stellar explosions dark energy

More articles from Physics and Astronomy:

nachricht Extremely fine measurements of motion in orbiting supermassive black holes
28.06.2017 | Stanford University

nachricht Ultra-compact phase modulators based on graphene plasmons
27.06.2017 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy

28.06.2017 | Awards Funding

Predicting eruptions using satellites and math

28.06.2017 | Earth Sciences

Extremely fine measurements of motion in orbiting supermassive black holes

28.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>