Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Throwing light on the dark side of the Universe

21.10.2008
Although we may believe humans know a lot about the Universe, there are still a lot of phenomena to be explained. A team of cosmologists from the University of the Basque Country are searching for the model that best explains the evolution of the Universe.

We usually have an image of scientists who study the Universe doing so peering through a telescope. And, effectively, this is what astrophysicists do: gather data about the observable phenomena of the Universe.

However, in order to interpret this data, i.e. to explain the majority of the phenomena occurring in the Universe, complicated calculations with a computer are required and which have to be based on appropriate mathematical models. This is what the Gravitation and Cosmology research team at the University of the Basque Country (UPV/EHU) is involved in: analysing models capable of explaining the evolution of the Universe.

Supernovas, witnesses to acceleration

One of the phenomena that standard models of physics have not yet been able to explain is that of the accelerated expansion of the Universe. Although Einstein proposed a static model to describe the Cosmos, today it is well known, thanks to supernovas amongst other things, that it is, in fact, expanding. Supernovas are very brilliant stellar explosions that, precisely due to this, provide useful data for exploring very distant regions of the Universe. By measuring the quantity of light that gets to us from a supernova, we can calculate its distance from us, and its colour indicates the speed at which it is distancing itself from us – the more reddish it is, the faster it is travelling. In other words, comparing two supernovas, the one that is distancing itself more slowly from us is a more bluish colour. According to observations by astrophysiscists, besides supernovas distancing themselves from us, they are doing so more and more rapidly, i.e. distancing themselves at an accelerated velocity, just like the rest of the material of the Universe.

Looking for dark energy

The energy known to exist in the Universe, however, is not sufficient to cause such acceleration. Thus, the theory most widely accepted within the scientific community is that there exists a ‘dark energy’, i.e. an energy that we cannot detect except by the gravitational force that it produces. In fact, it is believed that 73% of the energy of the Universe is dark. The dark energy debate is not just any theory: its existence has not been proved but, without it, standard models of physics would not be able to explain many of the phenomena occurring in the Universe.

So, what is dark energy exactly? What are its characteristics and have these properties always been the same or have they changed over time? These are questions, amongst others, that researchers at the Faculty of Science and Technology at the UPV/EHU, under the direction of Dr. Alexander Feinstein, are seeking to answer.

The unique characteristic of dark energy known to us is that it possesses repulsive gravitational force. That is, unlike the gravity we know on Earth, this force tends to distance stars, galaxies and the rest of the structures of the Universe from each other. This would explain why the expansion of the Universe is not constant, but accelerated. Nevertheless, this phenomenon can only be detected when achieving observationally enormous, almost unimaginable distances. This is why it is so difficult to understand the nature of dark energy.

The theory of phantom energy

To what point can the Universe expand? If this repulsive force is ever more intense, might it be infinite? This is one of the problems that the UPV/EHU researchers are focusing on. Such powerful dark energy is known as phantom energy, with which the Universe is able to expand to such an extent that the structures we know today would disappear.

This research group considers that the phantom energy model may be the most suitable to explain the accelerated expansion of the Universe. Amongst other things, the team has come to this conclusion after analysing the distribution of galaxies and the background microwave radiation which has inundated all of the Cosmos since shortly after the Big Bang. These waves travel in every direction and enable the exploration of what occurred at tremendously remote instants in time, moments close to the start of it all.

Lucía Álvarez | alfa
Further information:
http://www.elhuyar.com
http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=1906&hizk=I

Further reports about: Cosmos Supernovas Telescope Universe brilliant stellar explosions dark energy

More articles from Physics and Astronomy:

nachricht Space radiation won't stop NASA's human exploration
18.10.2017 | NASA/Johnson Space Center

nachricht Study shows how water could have flowed on 'cold and icy' ancient Mars
18.10.2017 | Brown University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>