Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Throwing light on the dark side of the Universe

21.10.2008
Although we may believe humans know a lot about the Universe, there are still a lot of phenomena to be explained. A team of cosmologists from the University of the Basque Country are searching for the model that best explains the evolution of the Universe.

We usually have an image of scientists who study the Universe doing so peering through a telescope. And, effectively, this is what astrophysicists do: gather data about the observable phenomena of the Universe.

However, in order to interpret this data, i.e. to explain the majority of the phenomena occurring in the Universe, complicated calculations with a computer are required and which have to be based on appropriate mathematical models. This is what the Gravitation and Cosmology research team at the University of the Basque Country (UPV/EHU) is involved in: analysing models capable of explaining the evolution of the Universe.

Supernovas, witnesses to acceleration

One of the phenomena that standard models of physics have not yet been able to explain is that of the accelerated expansion of the Universe. Although Einstein proposed a static model to describe the Cosmos, today it is well known, thanks to supernovas amongst other things, that it is, in fact, expanding. Supernovas are very brilliant stellar explosions that, precisely due to this, provide useful data for exploring very distant regions of the Universe. By measuring the quantity of light that gets to us from a supernova, we can calculate its distance from us, and its colour indicates the speed at which it is distancing itself from us – the more reddish it is, the faster it is travelling. In other words, comparing two supernovas, the one that is distancing itself more slowly from us is a more bluish colour. According to observations by astrophysiscists, besides supernovas distancing themselves from us, they are doing so more and more rapidly, i.e. distancing themselves at an accelerated velocity, just like the rest of the material of the Universe.

Looking for dark energy

The energy known to exist in the Universe, however, is not sufficient to cause such acceleration. Thus, the theory most widely accepted within the scientific community is that there exists a ‘dark energy’, i.e. an energy that we cannot detect except by the gravitational force that it produces. In fact, it is believed that 73% of the energy of the Universe is dark. The dark energy debate is not just any theory: its existence has not been proved but, without it, standard models of physics would not be able to explain many of the phenomena occurring in the Universe.

So, what is dark energy exactly? What are its characteristics and have these properties always been the same or have they changed over time? These are questions, amongst others, that researchers at the Faculty of Science and Technology at the UPV/EHU, under the direction of Dr. Alexander Feinstein, are seeking to answer.

The unique characteristic of dark energy known to us is that it possesses repulsive gravitational force. That is, unlike the gravity we know on Earth, this force tends to distance stars, galaxies and the rest of the structures of the Universe from each other. This would explain why the expansion of the Universe is not constant, but accelerated. Nevertheless, this phenomenon can only be detected when achieving observationally enormous, almost unimaginable distances. This is why it is so difficult to understand the nature of dark energy.

The theory of phantom energy

To what point can the Universe expand? If this repulsive force is ever more intense, might it be infinite? This is one of the problems that the UPV/EHU researchers are focusing on. Such powerful dark energy is known as phantom energy, with which the Universe is able to expand to such an extent that the structures we know today would disappear.

This research group considers that the phantom energy model may be the most suitable to explain the accelerated expansion of the Universe. Amongst other things, the team has come to this conclusion after analysing the distribution of galaxies and the background microwave radiation which has inundated all of the Cosmos since shortly after the Big Bang. These waves travel in every direction and enable the exploration of what occurred at tremendously remote instants in time, moments close to the start of it all.

Lucía Álvarez | alfa
Further information:
http://www.elhuyar.com
http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=1906&hizk=I

Further reports about: Cosmos Supernovas Telescope Universe brilliant stellar explosions dark energy

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>