Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Throwing light on the dark side of the Universe

21.10.2008
Although we may believe humans know a lot about the Universe, there are still a lot of phenomena to be explained. A team of cosmologists from the University of the Basque Country are searching for the model that best explains the evolution of the Universe.

We usually have an image of scientists who study the Universe doing so peering through a telescope. And, effectively, this is what astrophysicists do: gather data about the observable phenomena of the Universe.

However, in order to interpret this data, i.e. to explain the majority of the phenomena occurring in the Universe, complicated calculations with a computer are required and which have to be based on appropriate mathematical models. This is what the Gravitation and Cosmology research team at the University of the Basque Country (UPV/EHU) is involved in: analysing models capable of explaining the evolution of the Universe.

Supernovas, witnesses to acceleration

One of the phenomena that standard models of physics have not yet been able to explain is that of the accelerated expansion of the Universe. Although Einstein proposed a static model to describe the Cosmos, today it is well known, thanks to supernovas amongst other things, that it is, in fact, expanding. Supernovas are very brilliant stellar explosions that, precisely due to this, provide useful data for exploring very distant regions of the Universe. By measuring the quantity of light that gets to us from a supernova, we can calculate its distance from us, and its colour indicates the speed at which it is distancing itself from us – the more reddish it is, the faster it is travelling. In other words, comparing two supernovas, the one that is distancing itself more slowly from us is a more bluish colour. According to observations by astrophysiscists, besides supernovas distancing themselves from us, they are doing so more and more rapidly, i.e. distancing themselves at an accelerated velocity, just like the rest of the material of the Universe.

Looking for dark energy

The energy known to exist in the Universe, however, is not sufficient to cause such acceleration. Thus, the theory most widely accepted within the scientific community is that there exists a ‘dark energy’, i.e. an energy that we cannot detect except by the gravitational force that it produces. In fact, it is believed that 73% of the energy of the Universe is dark. The dark energy debate is not just any theory: its existence has not been proved but, without it, standard models of physics would not be able to explain many of the phenomena occurring in the Universe.

So, what is dark energy exactly? What are its characteristics and have these properties always been the same or have they changed over time? These are questions, amongst others, that researchers at the Faculty of Science and Technology at the UPV/EHU, under the direction of Dr. Alexander Feinstein, are seeking to answer.

The unique characteristic of dark energy known to us is that it possesses repulsive gravitational force. That is, unlike the gravity we know on Earth, this force tends to distance stars, galaxies and the rest of the structures of the Universe from each other. This would explain why the expansion of the Universe is not constant, but accelerated. Nevertheless, this phenomenon can only be detected when achieving observationally enormous, almost unimaginable distances. This is why it is so difficult to understand the nature of dark energy.

The theory of phantom energy

To what point can the Universe expand? If this repulsive force is ever more intense, might it be infinite? This is one of the problems that the UPV/EHU researchers are focusing on. Such powerful dark energy is known as phantom energy, with which the Universe is able to expand to such an extent that the structures we know today would disappear.

This research group considers that the phantom energy model may be the most suitable to explain the accelerated expansion of the Universe. Amongst other things, the team has come to this conclusion after analysing the distribution of galaxies and the background microwave radiation which has inundated all of the Cosmos since shortly after the Big Bang. These waves travel in every direction and enable the exploration of what occurred at tremendously remote instants in time, moments close to the start of it all.

Lucía Álvarez | alfa
Further information:
http://www.elhuyar.com
http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=1906&hizk=I

Further reports about: Cosmos Supernovas Telescope Universe brilliant stellar explosions dark energy

More articles from Physics and Astronomy:

nachricht Scientific achievements during the operation of Lomonosov satellite
18.12.2017 | Lomonosov Moscow State University

nachricht Quantum memory with record-breaking capacity based on laser-cooled atoms
18.12.2017 | Faculty of Physics University of Warsaw

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Single-photon detector can count to 4

18.12.2017 | Information Technology

Quantum memory with record-breaking capacity based on laser-cooled atoms

18.12.2017 | Physics and Astronomy

How much soil goes down the drain -- New data on soil lost due to water

18.12.2017 | Agricultural and Forestry Science

VideoLinks
B2B-VideoLinks
More VideoLinks >>>