Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Three's a charm: NIST detectors reveal entangled photon triplets

15.09.2014

Researchers at the University of Waterloo in Canada have directly entangled three photons in the most technologically useful state for the first time, thanks in part to superfast, super-efficient single-photon detectors developed by the National Institute of Standards and Technology (NIST).

Entanglement is a special feature of the quantum world in which certain properties of individual particles become linked such that knowledge of the quantum state of any one particle dictates that of the others. Entanglement plays a critical role in quantum information systems. Prior to this work it was impossible to entangle more than two photons without also destroying their fragile quantum states.


NIST chip containing a single-photon detector was made of superconducting nanowires. Four chips like this were used in the experiment that entangled three photons.

Credit: Verma/NIST

Entangled photon triplets could be useful in quantum computing and quantum communications—technologies with potentially vast power based on storing and manipulating information in quantum states—as well as achieving elusive goals in physics dating back to Einstein. The team went on to use the entangled triplets to perform a key test of quantum mechanics.

The Waterloo/NIST experiment, described in Nature Photonics,* generated three photons with entangled polarization—vertical or horizontal orientation—at a rate of 660 triplets per hour. (The same research group previously entangled the timing and energy of three photons, a state that is more difficult to use in quantum information systems.)

"The NIST detectors enabled us to take data almost 100 times faster," says NIST physicist Krister Shalm, who was a postdoctoral researcher at Waterloo. "The detectors enabled us to do things we just couldn't do before. They allowed us to speed everything up so the experiment could be much more stable, which greatly improved the quality of our results."

The experiments started with a blue photon that was polarized both vertically and horizontally—such a superposition of two states is another unique feature of the quantum world. The photon was sent through a special crystal that converted it to two entangled red daughter photons, each with half the original energy. Researchers engineered the system to ensure that this pair had identical polarization. Then one daughter photon was sent through another crystal to generate two near-infrared granddaughter photons entangled with the second daughter photon.

The result was three entangled photons with the same polarization, either horizontal or vertical—which could represent 0 and 1 in a quantum computer or quantum communications system. As an added benefit, the granddaughter photons had a wavelength commonly used in telecommunications, so they can be transmitted through fiber, an advantage for practical applications.

Triplets are rare. In this process, called cascaded down-conversion, the first stage works only about 1 in a billion times, and the second is not much better: 1 in a million. To measure experimental polarization results against 27 possible states of a set of three photons, researchers performed forensic reconstructions by taking snapshot measurements of the quantum states of thousands of triplets. The NIST detectors were up to these tasks, able to detect and measure individual photons at telecom wavelengths more than 90 percent of the time.

The superconducting nanowire single-photon detectors incorporated key recent improvements made at NIST, chiefly the use of tungsten silicide, which among other benefits greatly boosted efficiency.**

To demonstrate the quality and value of the triplets, researchers tested local realism—finding evidence that, as quantum theory predicts, entangled particles do not have specific values before being measured.*** Researchers also measured one of each of a succession of triplets to show they could herald or announce the presence of the remaining entangled pairs. An on-demand system like this would be useful in quantum repeaters, which could extend the range of quantum communications systems, or sharing of secret data encryption keys.

With improvements in conversion efficiency through use of novel materials or other means, it may be possible to add more stages to the down-conversion process to generate four or more entangled photons.

###

The work was supported in part by the Ontario Ministry of Research and Innovation Early Researcher Award, Quantum Works, the Natural Sciences and Engineering Research Council of Canada, Ontario Centres of Excellence, Industry Canada, the Canadian Institute for Advanced Research, Canada Research Chairs and the Canadian Foundation for Innovation.

* D.R. Hamel, L.K. Shalm, H.H. Hubel, A.J. Miller, F. Marsili, V.B. Verma, R.P. Mirin, S.W. Nam, K.J. Resch and T. Jennewein. Direct generation of three-photon polarization entanglement. Nature Photonics. Published online Sept. 14.

** For more about the detectors, see the 2011 NIST Tech Beat article, "Key Ingredient: Change in Material Boosts Prospects of Ultrafast Single-photon Detector," and updates "High Efficiency in the Fastest Single-Photon Detector System" (Feb. 2013) and "Closing the Last Bell-test Loophole for Photons" (June, 2013).

*** Specifically, the researchers calculated Mermin and Svetlichny inequalities, two tests of local realism. One result was the strongest-ever measured violation of the three-particle Svetlichny inequality, according to the paper.

Laura Ost | Eurek Alert!
Further information:
http://www.nist.gov

Further reports about: Entanglement NIST Photonics detectors individual photons polarization

More articles from Physics and Astronomy:

nachricht Igniting a solar flare in the corona with lower-atmosphere kindling
29.03.2017 | New Jersey Institute of Technology

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>