Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Three-detector observation of gravitational waves


The cosmic ripples were not only observed by the two Ligo observatories in the USA, but also the Italian detector Virgo

The observation of gravitational waves is gradually becoming routine. Once again, researchers have recorded the ripples of space-time predicted by Albert Einstein a hundred years ago. But this time, next to the two US Advanced Ligo observatories, which detected all three gravitational waves recorded so far, the Italian Advanced Virgo detector was also involved. On August 14, at 12:30:43 pm CEST, all three detectors observed a gravitational wave signal, known as GW170814, generated by two coalescing black holes.

Signal from space: Two black holes with 31 and 25 solar masses merge, thereby emitting gravitational waves. The colours characterize the strength of the field.

© Numerical-relativistic simulation: S. Ossokine, A. Buonanno (Max Planck Institute for Gravitational Physics), Simulating eXtreme Spacetimes Project; Scientific Visualization: T. Dietrich (Max Planck Institute for Gravitational Physics), R. Haas (NCSA)

Triple evidence: The signal on August 14 was measured by the two Ligo observatories in Hanford and Livingston and the Virgo detector almost at the same time.

© The LIGO Scientific Collaboration and the Virgo Collaboration

Researchers at the Max Planck Institute for Gravitational Physics at the Hanover and Potsdam sites were delighted with the results. “Gravitational wave astronomy is rapidly advancing. With a third large detector, we can even more accurately determine the position and distance of the gravitational wave sources“, says Alessandra Buonanno, and her two co-directors Bruce Allen and Karsten Danzmann. “We can thus search more efficiently for electromagnetic and astroparticle counterparts of the sources and together advance into the new era of multi-messenger astronomy”.

In the case of GW170814, a total of 25 astronomical observatories searched for electromagnetic radiation in the gamma, optical, infrared, x-ray, and radio wavelength ranges, as well as for neutrino emissions. None of the instruments observed any signal but this is expected for stellar-mass black holes.

The two cosmic monsters had about 31 and 25 solar masses. The resulting black hole has 53 solar masses - three solar masses were translated into gravitational waves. The signal arrived at the LIGO Livingston detector about 8 milliseconds before the LIGO Hanford detector and about 14 milliseconds before the Virgo detector in Tuscany. From this combination of arrival time delays, the direction towards the source can be determined.

The researchers succeeded in localizing GW170814 to a patch of 60 square degrees in the southern celestial hemisphere between the constellations Eridanus and Horologium. By comparing the measured waveform with predictions from the General Relativity Theory, scientists could estimate the distance to the black holes of about 1.8 billion light years.

Researchers from the Max Planck Institute from the Gravitational Physics in Hannover and Potsdam were also involved in the detection and analysis of the event. For example, Karsten Danzmann has been operating the GEO600 Collaboration, a team of Max Planck, Leibniz Universität Hannover and UK researchers, since the mid 1990s. GEO600 is a development center for novel and advanced technologies in the international gravitational-wave research community.

Max Planck researchers together with the Laser Zentrum Hannover e.V. developed, built, and installed the high-power laser systems at the heart of the LIGO instruments. Crucial improvements in the optical measurement principle such as power and signal recycling were first demonstrated at high sensitivity in GEO600.

Members of the “Observational Relativity and Cosmology” division at the Max Planck Institute in Hannover analyzed Virgo data to estimate the probability that the weak Virgo signal is caused by random noise fluctuations. They found the signal to be real with a probability of more than 99%. They also developed methods to clean the LIGO data from instrumental artifacts, and thereby significantly increased the LIGO sensitivity.

In addition, members of the Observational Relativity and Cosmology division developed and implemented many of the algorithms and software used in the analysis of the LIGO data. These analyses were used, for example, to establish the statistical significance of GW170814 and to determine its parameters. In addition, about 40% of the ongoing LIGO data analysis of data from the second science run “O2” was performed on the Atlas supercomputer operated by the division.

As with previous ground-breaking gravitational-wave observations the role of the Astrophysical and Cosmological Relativity division of the Max Planck Institute in Potsdam was crucial in observing and interpreting GW170814 – for example, in developing and using the most accurate waveform models to both search for and characterize the source of GW170814.

Models also included new physical effects, such as eccentricity and tides for neutron stars. The goal is to shed light on binary’s formation scenarios and matter at extreme conditions with future observations. Members of the division at the AEI in Potsdam have continued to improve waveform models including new physical effects, such as eccentricity and tides for neutron stars, to shed light on binary’s formation scenarios and matter at extreme conditions with future observations.


Prof. Dr. Bruce Allen
Max Planck Institute for Gravitational Physics (Hannover), Hannover
Phone: +49 511 762-17148

Prof. Dr. Alessandra Buonanno
Max Planck Institute for Gravitational Physics, Potsdam-Golm
Phone: +49 331 567-7220

Fax: +49 331 567-7298

Prof. Dr. Karsten Danzmann
Max Planck Institute for Gravitational Physics (Hannover), Hannover
Phone: +49 511 762-2356

Fax: +49 511 762-5861

Dr. Benjamin Knispel
Press & public outreach officer

Max Planck Institute for Gravitational Physics (Hannover), Hannover
Phone: +49 511 762-19104

Dr. Elke Müller
Press & public outreach officer

Max Planck Institute for Gravitational Physics, Potsdam-Golm
Phone: +49 331 567-7303

Fax: +49 331 567-7298

Prof. Dr. Bruce Allen | Max Planck Institute for Gravitational Physics
Further information:

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>