Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Three-detector observation of gravitational waves

28.09.2017

The cosmic ripples were not only observed by the two Ligo observatories in the USA, but also the Italian detector Virgo

The observation of gravitational waves is gradually becoming routine. Once again, researchers have recorded the ripples of space-time predicted by Albert Einstein a hundred years ago. But this time, next to the two US Advanced Ligo observatories, which detected all three gravitational waves recorded so far, the Italian Advanced Virgo detector was also involved. On August 14, at 12:30:43 pm CEST, all three detectors observed a gravitational wave signal, known as GW170814, generated by two coalescing black holes.


Signal from space: Two black holes with 31 and 25 solar masses merge, thereby emitting gravitational waves. The colours characterize the strength of the field.

© Numerical-relativistic simulation: S. Ossokine, A. Buonanno (Max Planck Institute for Gravitational Physics), Simulating eXtreme Spacetimes Project; Scientific Visualization: T. Dietrich (Max Planck Institute for Gravitational Physics), R. Haas (NCSA)


Triple evidence: The signal on August 14 was measured by the two Ligo observatories in Hanford and Livingston and the Virgo detector almost at the same time.

© The LIGO Scientific Collaboration and the Virgo Collaboration

Researchers at the Max Planck Institute for Gravitational Physics at the Hanover and Potsdam sites were delighted with the results. “Gravitational wave astronomy is rapidly advancing. With a third large detector, we can even more accurately determine the position and distance of the gravitational wave sources“, says Alessandra Buonanno, and her two co-directors Bruce Allen and Karsten Danzmann. “We can thus search more efficiently for electromagnetic and astroparticle counterparts of the sources and together advance into the new era of multi-messenger astronomy”.

In the case of GW170814, a total of 25 astronomical observatories searched for electromagnetic radiation in the gamma, optical, infrared, x-ray, and radio wavelength ranges, as well as for neutrino emissions. None of the instruments observed any signal but this is expected for stellar-mass black holes.

The two cosmic monsters had about 31 and 25 solar masses. The resulting black hole has 53 solar masses - three solar masses were translated into gravitational waves. The signal arrived at the LIGO Livingston detector about 8 milliseconds before the LIGO Hanford detector and about 14 milliseconds before the Virgo detector in Tuscany. From this combination of arrival time delays, the direction towards the source can be determined.

The researchers succeeded in localizing GW170814 to a patch of 60 square degrees in the southern celestial hemisphere between the constellations Eridanus and Horologium. By comparing the measured waveform with predictions from the General Relativity Theory, scientists could estimate the distance to the black holes of about 1.8 billion light years.

Researchers from the Max Planck Institute from the Gravitational Physics in Hannover and Potsdam were also involved in the detection and analysis of the event. For example, Karsten Danzmann has been operating the GEO600 Collaboration, a team of Max Planck, Leibniz Universität Hannover and UK researchers, since the mid 1990s. GEO600 is a development center for novel and advanced technologies in the international gravitational-wave research community.

Max Planck researchers together with the Laser Zentrum Hannover e.V. developed, built, and installed the high-power laser systems at the heart of the LIGO instruments. Crucial improvements in the optical measurement principle such as power and signal recycling were first demonstrated at high sensitivity in GEO600.

Members of the “Observational Relativity and Cosmology” division at the Max Planck Institute in Hannover analyzed Virgo data to estimate the probability that the weak Virgo signal is caused by random noise fluctuations. They found the signal to be real with a probability of more than 99%. They also developed methods to clean the LIGO data from instrumental artifacts, and thereby significantly increased the LIGO sensitivity.

In addition, members of the Observational Relativity and Cosmology division developed and implemented many of the algorithms and software used in the analysis of the LIGO data. These analyses were used, for example, to establish the statistical significance of GW170814 and to determine its parameters. In addition, about 40% of the ongoing LIGO data analysis of data from the second science run “O2” was performed on the Atlas supercomputer operated by the division.

As with previous ground-breaking gravitational-wave observations the role of the Astrophysical and Cosmological Relativity division of the Max Planck Institute in Potsdam was crucial in observing and interpreting GW170814 – for example, in developing and using the most accurate waveform models to both search for and characterize the source of GW170814.

Models also included new physical effects, such as eccentricity and tides for neutron stars. The goal is to shed light on binary’s formation scenarios and matter at extreme conditions with future observations. Members of the division at the AEI in Potsdam have continued to improve waveform models including new physical effects, such as eccentricity and tides for neutron stars, to shed light on binary’s formation scenarios and matter at extreme conditions with future observations.

Contact:

Prof. Dr. Bruce Allen
Max Planck Institute for Gravitational Physics (Hannover), Hannover
Phone: +49 511 762-17148
Email: bruce.allen@aei.mpg.de

Prof. Dr. Alessandra Buonanno
Max Planck Institute for Gravitational Physics, Potsdam-Golm
Phone: +49 331 567-7220

Fax: +49 331 567-7298
Email: alessandra.buonanno@aei.mpg.de


Prof. Dr. Karsten Danzmann
Max Planck Institute for Gravitational Physics (Hannover), Hannover
Phone: +49 511 762-2356

Fax: +49 511 762-5861
Email: karsten.danzmann@aei.mpg.de


Dr. Benjamin Knispel
Press & public outreach officer

Max Planck Institute for Gravitational Physics (Hannover), Hannover
Phone: +49 511 762-19104
Email: benjamin.knispel@aei.mpg.de


Dr. Elke Müller
Press & public outreach officer

Max Planck Institute for Gravitational Physics, Potsdam-Golm
Phone: +49 331 567-7303

Fax: +49 331 567-7298

Prof. Dr. Bruce Allen | Max Planck Institute for Gravitational Physics
Further information:
https://www.mpg.de/11492342/three-detector-observation-of-gravitational-waves

More articles from Physics and Astronomy:

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

nachricht A quantum entanglement between two physically separated ultra-cold atomic clouds
17.05.2018 | University of the Basque Country

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>