Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thin films of nickel and iron oxides yield efficient solar water-splitting catalyst

21.03.2013
Basic University of Oregon research shows promise in efforts to get hydrogen fuel from sunlight and water

University of Oregon chemists say that ultra-thin films of nickel and iron oxides made through a solution synthesis process are promising catalysts to combine with semiconductors to make devices that capture sunlight and convert water into hydrogen and oxygen gases.

Researchers in the Solar Materials and Electrochemistry Laboratory of Shannon Boettcher, professor of chemistry, studied the catalyst material and also developed a computer model for applying catalyst thin films in solar water-splitting devices as a tool to predict the effectiveness of a wide range of catalyst materials for solar-hydrogen production.

The project has resulted in two recent papers.

The first, detailed last September in the Journal of the American Chemical Society, showed that films of a nickel-iron mixed oxide with an atomic structure similar to naturally occurring minerals show the highest catalytic activity for forming oxygen from water, based on a side-by-side comparison of eight oxide-based materials targeted in various research efforts. The second paper, just published in the Journal of Physical Chemistry Letters, details the performance of the catalyst thin films when combined with semiconductor light absorbers, showing that the nickel-iron oxide catalyst was most effective with a film just 0.4 nanometers thick.

Boettcher's lab, located in the UO's Materials Science Institute, studies fundamental materials chemistry and physical concepts related to the conversion of solar photons (sunlight) into electrons and holes in semiconductors that can then be used to drive chemical processes such as splitting protons off water to make hydrogen and oxygen gases. Multiple labs across the country are seeking effective and economical ways of taking sunlight and directly producing hydrogen gas as an alternative sustainable fuel to replace fossil fuels.

"When you want to pull the protons off a water molecule to make hydrogen gas for fuel, you also have to take the leftover oxygen atoms and make oxygen gas out of them," Boettcher said. "It turns out that the slowest, hardest, most-energy-consuming step in the water-splitting process is actually the oxygen-making step. We've been studying catalysts for making oxygen. Specifically, we're seeking catalysts that reduce the amount of energy it takes in this step and that don't use expensive precious metals."

The iron-nickel oxides, he said, have higher catalytic activity than the precious-metal-based catalytic materials that have been thought to be the best for the job.

"What we found is that when we take nickel oxide films that start out as a crystalline material with the rock-salt structure like table salt, they absorb iron impurities and spontaneously convert into materials with a layered structure during the catalysis process," Boettcher said.

Lena Trotochaud, a doctoral student and lead author on both papers, studied this process and how the films can be combined with semiconductors. "The semiconductors absorb the light, generating electron-hole pairs which move onto the catalyst material and proceed to drive the water-splitting reaction, creating fuel," Boettcher said.

The computer modeling was used to understand how the amount of sunlight that the catalyst blocks from reaching the semiconductor can be minimized while simultaneously speeding up the reaction with water to form oxygen gas. This basic discovery remains a lab accomplishment for now, but it could advance to testing in a prototype device, Boettcher added.

"We're now looking at the fundamental reasons why these materials are good," Trotochaud said. "We are trying to understand how the catalyst works by focusing on the chemistry that is happening, and then also recognizing how that fits into a real system. Our research is fundamentally guiding how you would take these catalysts and incorporate them into something that is useful for everyone in society."

One such place the material could land in a prototype for testing is at the U.S. Department of Energy's Joint Center for Artificial Photosynthesis, an Energy Innovation Hub. The DOE supported Boettcher's research done in the second study through a Basic Sciences Energy grant (DE-FG02-12ER16323).

"This research holds great potential for the development of more efficient, more sustainable solar-fuel generation systems and other kinds of transformative energy technology," said Kimberly Andrews Espy, vice president for research and innovation and dean of the graduate school. "By seeking to advance carbon-neutral energy technology, Dr. Boettcher and his team are helping to establish Oregon as an intellectual and economic leader in fostering a sustainable future for our planet and its people."

The research reported in the first paper in JACS was funded by the Center for Sustainable Materials Chemistry, a $20 million National Science Foundation-funded center co-based at the UO and Oregon State University in Corvallis (CHE-1102637). Co-authors with Trotochaud and Boettcher were James K. Ranney, an undergraduate student in chemistry, and Kerisha N. Williams, who participated under the NSF-funded Undergraduate Catalytic Outreach and Research Experiences (UCORE) program.

Funding for the research detailed in the second paper also came, in part, from the Center for Sustainable Materials Chemistry. The DOE grant to Boettcher also supported co-author Thomas J. Mills, a UO graduate.

About the University of Oregon

The University of Oregon is among the 108 institutions chosen from 4,633 U.S. universities for top-tier designation of "Very High Research Activity" in the 2010 Carnegie Classification of Institutions of Higher Education. The UO also is one of two Pacific Northwest members of the Association of American Universities.

Sources:

Shannon Boettcher, assistant professor of chemistry
541-346-2543
swb@uoregon.edu
Lena Trotochaud
lenat@uoregon.edu
Links:
Boettcher faculty page: http://chemistry.uoregon.edu/fac.html?boettcher
Solar Materials and Electrochemistry Laboratory: https://wiki.uoregon.edu//display/BOETTCHERLAB/Boettcher+Group+Website+and+Wiki
UO Chemistry Department: http://pages.uoregon.edu/chem/
Materials Science Institute: http://materialscience.uoregon.edu/
UCORE: http://pages.uoregon.edu/msiuo/undergrad/ucore/ucore.html
Follow UO Science on Facebook: http://www.facebook.com/UniversityOfOregonScience
UO Science on Twitter: http://twitter.com/UO_Research
More UO Science/Research News: http://uoresearch.uoregon.edu
Note: The University of Oregon is equipped with an on-campus television studio with satellite uplink capacity, and a radio studio with an ISDN phone line for broadcast-quality radio interviews. Call the Media Contact above to begin the process.

Jim Barlow | EurekAlert!
Further information:
http://www.uoregon.edu

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>