Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thermal vision: Graphene light detector first to span infrared spectrum

17.03.2014

The first room-temperature light detector that can sense the full infrared spectrum has the potential to put heat vision technology into a contact lens.

Unlike comparable mid- and far-infrared detectors currently on the market, the detector developed by University of Michigan engineering researchers doesn't need bulky cooling equipment to work.

"We can make the entire design super-thin," said Zhaohui Zhong, assistant professor of electrical engineering and computer science. "It can be stacked on a contact lens or integrated with a cell phone."

Infrared light starts at wavelengths just longer than those of visible red light and stretches to wavelengths up to a millimeter long. Infrared vision may be best known for spotting people and animals in the dark and heat leaks in houses, but it can also help doctors monitor blood flow, identify chemicals in the environment and allow art historians to see Paul Gauguin's sketches under layers of paint.

Unlike the visible spectrum, which conventional cameras capture with a single chip, infrared imaging requires a combination of technologies to see near-, mid- and far-infrared radiation all at once. Still more challenging, the mid-infrared and far-infrared sensors typically need to be at very cold temperatures.

Graphene, a single layer of carbon atoms, could sense the whole infrared spectrum—plus visible and ultraviolet light. But until now, it hasn't been viable for infrared detection because it can't capture enough light to generate a detectable electrical signal. With one-atom thickness, it only absorbs about 2.3 percent of the light that hits it. If the light can't produce an electrical signal, graphene can't be used as a sensor.

"The challenge for the current generation of graphene-based detectors is that their sensitivity is typically very poor," Zhong said. "It's a hundred to a thousand times lower than what a commercial device would require."

To overcome that hurdle, Zhong and Ted Norris, the Gerard A. Mourou Professor of Electrical Engineering and Computer Science, worked with graduate students to design a new way of generating the electrical signal. Rather than trying to directly measure the electrons that are freed when light hits the graphene, they amplified the signal by looking instead at how the light-induced electrical charges in the graphene affect a nearby current.

"Our work pioneered a new way to detect light," Zhong said. "We envision that people will be able to adopt this same mechanism in other material and device platforms."

To make the device, they put an insulating barrier layer between two graphene sheets. The bottom layer had a current running through it. When light hit the top layer, it freed electrons, creating positively charged holes. Then, the electrons used a quantum mechanical trick to slip through the barrier and into the bottom layer of graphene.

The positively charged holes, left behind in the top layer, produced an electric field that affected the flow of electricity through the bottom layer. By measuring the change in current, the team could deduce the brightness of the light hitting the graphene. The new approach allowed the sensitivity of a room-temperature graphene device to compete with that of cooled mid-infrared detectors for the first time.

The device is already smaller than a pinky nail and is easily scaled down. Zhong suggests arrays of them as infrared cameras.

"If we integrate it with a contact lens or other wearable electronics, it expands your vision," Zhong said. "It provides you another way of interacting with your environment."

While full-spectrum infrared detection is likely to find application in military and scientific technologies, the question for the general tech market may soon be, "Do we want to see in infrared?"

The device is described in a paper titled "Graphene photodetectors with ultra-broadband and high responsivity at room temperature," which appears online in Nature Nanotechnology.

###

This work was supported by the National Science Foundation in part through Michigan Engineering's Center for Photonic and Multiscale Nanomaterials, and was carried out with help from electrical engineering and computer science doctoral students Chang-Hua Liu and You-Chia Chang.

Zhaohui Zhong: http://www.eecs.umich.edu/zhonglab

Center for Photonic and Multiscale Nanomaterials: http://cphom.engin.umich.edu

Kate McAlpine | EurekAlert!

Further reports about: Photonic Thermal cameras detector electrons graphene lens sensitivity spectrum technologies wavelengths

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>