Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New theory may shed light on dynamics of large-polymer liquids

24.08.2011
A new physics-based theory could give researchers a deeper understanding of the unusual, slow dynamics of liquids composed of large polymers.

This advance provides a better picture of how polymer molecules respond under fast-flow, high-stress processing conditions for plastics and other polymeric materials.

Kenneth S. Schweizer, the G. Ronald and Margaret H. Professor of materials science and engineering at the University of Illinois, and graduate student Daniel Sussman published their findings in the journal Physical Review Letters.

“This is the first microscopic theory of entangled polymer liquids at a fundamental force level which constructs the dynamic confinement potential that controls slow macromolecular motion,” said Schweizer, who also is a professor of chemistry and of chemical and biomolecular engineering and is affiliated with the Frederick Seitz Materials Research Laboratory at the U. of I. “Our breakthrough lays the foundation for an enormous amount of future work relevant to both the synthetic polymers of plastics engineering and the biopolymers relevant to cell biology and mechanics.”

Polymers are long, large molecules that are ubiquitous in biology, chemistry and materials, from the stiff filaments that give cells their structure to plastics. Linear polymers fall into two classes: rigid rods like uncooked spaghetti or flexible strands like al dente noodles.

When in a dense solution, linear polymers become entangled like spaghetti in a pot, intertwining and crowding each other. Each polymer is hemmed in by its neighbors, so that the liquid behaves like an elastic, viscous rubber. Given enough time, the liquid will eventually flow slowly as polymers crawl along like snakes, a movement called reptation. Researchers have long assumed that each polymer’s reptation is confined to a tube-shaped region of space, like a snake slithering through a pipe, but have had difficulty understanding how and why the polymers behave that way.

Schweizer and Sussman’s new theory, based on microscopic physics, explains the slow dynamics of rigid entangled polymers and quantitatively constructs the confining dynamic tube from the forces between molecules. The tube concept emerges as a consequence of the strong interactions of a polymer with its myriad of intertwining neighbors. The theory’s mathematical approach sheds greater light on entanglement and better explains experimental data.

“Our ability to take into account these crucial physical effects allows us to predict, not assume, the confining tube concept, identify its limitations, and predict how applied forces modify motion and elasticity,” Schweizer said.

Not only does the new theory predict tube confinement and reptative motion, it reveals important limitations. The researchers found that the “tubes” weaken as applied forces increase, to the point where the tube concept fails completely and the liquid loses its rubbery nature. This is particularly important in plastics processing, which exposes polymer liquids to high stress conditions.

Next, the researchers plan to continue to study how external stress or strain quantitatively determine the driven mechanical flow behavior of entangled polymer liquids. They also hope to develop a theory for how attractive forces can compete with entanglement forces to result in soft polymer gels.

The National Science Foundation supported this work.

Editor’s notes: To reach Kenneth Schweizer, call 217-333-6440;
email kschweiz@illinois.edu.
The paper, “Microscopic Theory of the Tube Confinement Potential for Liquids of Topologically Entangled Rigid Macromolecules,” is available online:

http://prl.aps.org/abstract/PRL/v107/i7/e078102

Liz Ahlberg | University of Illinois
Further information:
http://www.illinois.edu

More articles from Physics and Astronomy:

nachricht One-way roads for spin currents
23.05.2018 | Singapore University of Technology and Design

nachricht Tunable diamond string may hold key to quantum memory
23.05.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>