Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New theory for latest high-temperature superconductors

15.08.2008
Rice, Rutgers physicists explain, predict properties of iron compounds

Physicists from Rice and Rutgers universities have published a new theory that explains some of the complex electronic and magnetic properties of iron "pnictides." In a series of startling discoveries this spring, pnictides were shown to superconduct at relatively high temperatures.

The surprising discoveries created a great deal of excitement in the condensed matter physics community, which has been scrambling to better understand and document the unexpected results.

High-temperature superconductivity -- a phenomenon first documented in 1986 -- remains one of the great, unexplained mysteries of condensed matter physics. Until the discovery of the iron pnictides (pronounced NIK-tides), the phenomena was limited to a class of copper-based compounds called "cuprates" (pronounced COO-prayts).

The new pnictide theory appears in this week's issue of Physical Review Letters.

"There is a great deal of excitement in the quantum condensed matter community about the iron pnictides," said paper co-author Qimiao Si, Rice University theoretical physicist. "For more than 20 years, our perspective was limited to cuprates, and it is hoped that this new class of materials will help us understand the mechanism for high-temperature superconductivity."

From its initial discovery, high-temperature superconductivity came as a shock to physicists. Superconductors are materials that conduct electricity without any resistance, and in 1986, the prevailing theory of superconductivity held that the phenomenon could not occur at temperatures greater than about 30 kelvins (minus 405 degrees Fahrenheit). Some cuprates have since been discovered to superconduct at temperatures higher than 140 kelvins.

The 2006 discovery of superconductivity in one iron pnictide did not receive much notice from the physics community, since it occurred only below several kelvins. In February 2008, a group from Japan discovered superconductivity above 20 kelvins in another of the iron pnictides. In March and April, several research groups from China showed that related iron pnictides superconduct at temperatures greater than 50 kelvins.

In their new theory, Si and Rutgers University theorist Elihu Abrahams explain some of the similarities and differences between cuprates and pnictides. The arrangement of atoms in both types of materials creates a "strongly correlated electron system" in which electrons interact in a coordinated way and behave collectively.

Si and Abrahams propose that the pnictides exhibit a property called "magnetic frustration," a particular atomic arrangement that suppresses the natural tendency of iron atoms to magnetically order themselves in relation to each other. These frustration effects enhance magnetic quantum fluctuations, which may be responsible for the high-temperature superconductivity.

"Precisely how this happens is one of the challenging questions in strongly correlated electron systems," Abrahams said. "But even though we don't know the precise mechanism, we are still able to make some general predictions about the behavior of pnictides, and we've suggested a number of experiments that can test these predictions." The tests include some specific forms of the electronic spectrum and spin states.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Physics and Astronomy:

nachricht One-way roads for spin currents
23.05.2018 | Singapore University of Technology and Design

nachricht Tunable diamond string may hold key to quantum memory
23.05.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>