Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Theoretical physicists are modeling complex quantum processes with cold atoms and ions

08.11.2017

A group of researchers from Russia, Germany and Iran develops computational methods for creating a theory describing the behavior of cold atoms and ions in optical and electromagnetic traps. There is a high demand for these works due to the possibility of modeling with such completely controlled quantum systems of complex processes, from solid-state physics to high-energy physics.

The projects on designing elements of a quantum computer and ultra-precise atomic clock based on trapped ultracold atoms and ions are being discussed. The results of the latest studies of the group were presented at the conference Grid, Cloud and High-Performance Computing in Science (Sinaia, Romania). The work was published in Physical Review E.


This is a diagram of a hybrid atomic-ion trap.

Credit: Vladimir Melezhik

At ultralow temperatures (for alkali metal atoms they reach values of several nK), atoms move at a very low speed, which allows conducting high-precision experiments. However, to interpret and plan the experiments, theoretical calculations are required.

Vladimir Melezhik, Doctor of Physical and Mathematical Sciences from RUDN University, is engaged in calculations of resonant phenomena and collision processes in ultracold quantum gases. Quantum gas is retained at ultralow temperatures in an optical trap formed by a specially tuned laser beams.

The developed experimental technique makes it possible to control and tune the parameters of such quantum systems: the number of particles, their spin composition, temperature, and, last but not least, the effective interaction between atoms. However, the task of quantitative description of the processes occurring is significantly complicated by the fact that in such systems the atoms interact not only with each other but also with the trap.

Vladimir Melezhik and his co-authors focus on atomic and ion traps, which have the shape of highly elongated cigars and are similar to waveguides used for transmission of electromagnetic waves. The researchers have been studying the propagation of electromagnetic radiation in waveguides for a long time, and effective methods of calculation have been developed. However, a quantitative theory that could describe ultracold processes in atomic and ion waveguides is still under development.

"The trap adds a complexity to the problem. In free space, there are no preferred directions. This circumstance makes it possible to reduce the six-dimensional quantum two-body problem of two colliding atoms to a one-dimensional one. This is the key problem of quantum mechanics, described in textbooks. However, in the atomic trap, due to appearance of a preferred direction, the symmetry is violated which makes it impossible to reduce the problem to one-dimensional one.

In certain cases the problem can be reduced to the two-dimensional Schrödinger equation. However, in most interesting cases it becomes necessary to integrate the Schrödinger equation in higher dimensions. To solve this class of problems, one needs to develop special computational methods and use powerful computers. We managed to make significant progress on this pass", the author of the report Vladimir Melezhik said.

By changing the parameters of the trap, one can control the intensity of effective interatomic interactions, from superstrong attraction to superstrong repulsion of atoms. This fact makes it possible to simulate various critical quantum phenomena using ultracold trapped atoms.

"One of the areas of our work is a numerical study of ultracold quantum systems using hybrid atomic-ion traps, offering new possibilities for modeling some actual processes of solid state physics, elements of quantum computing and precision physics research", the scientist concluded.

###

The work was carried out in cooperation with scientists from the University of Hamburg (Germany), the Institute for Advanced Studies in Basic Sciences (IASBS) in Zanjan, Iran and the Joint Institute for Nuclear Research (Dubna).

Media Contact

Valeriya V. Antonova
antonova_vv@rudn.university

http://eng.rudn.ru/ 

Valeriya V. Antonova | EurekAlert!

Further reports about: Schrödinger phenomena quantum systems ultracold quantum gases

More articles from Physics and Astronomy:

nachricht From Hannover around the world and to the Mars: LZH delivers laser for ExoMars 2020
21.11.2017 | Laser Zentrum Hannover e.V.

nachricht Taking a spin on plasma space tornadoes with NASA observations
20.11.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>