Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The turbulent heart of the Milky Way

20.08.2015

Using the X-ray satellite XMM-Newton, astronomers observe the events around the black hole at the centre of our galaxy

Who left the deep scars on the heart of our Milky Way? In their hunt for elusive clues that might reveal the culprit, an international team of astronomers at the Max Planck Institute for Extraterrestrial Physics has been scouring cosmic images of the X-ray satellite XMM-Newton. The prime suspect is the supermassive black hole lurking at the centre of the Milky Way. But a number of massive stars and supernovae do not appear entirely innocent, either.


Zoom into the centre: magnified image of the central 100 light years of the Milky Way centre, where here only the soft X-ray emission is shown. The Galactic black hole and its surrounding emission are located in the brightest central region of the image, and the bipolar lobes appear above and below that location.

© MPE / ESA


Glimpse into the heart of the Milky Way: this X-ray broad-band mosaic image consists of more than a hundred individual XMM-Newton observations within the central degree of the Milky Way. The colours indicate observations at different energies; this map covers a region about 500 hundred light years across. In addition to the X-ray emission from the regions around the supermassive black hole at the centre of the Milky Way this map reveals X-ray binaries, star clusters, supernova remnants, bubbles and superbubbles, non-thermal filaments and many other sources.

© MPE / ESA

The study of the X-ray emission from the Galactic centre is of primary importance for astronomy. One of the first large projects approved and performed by the X-ray satellite XMM-Newton, right after launch, was a scan of the Galactic centre. A team lead by scientists at the Max Planck Institute for Extraterrestrial Physics (MPE) has recently obtained a new scan with XMM-Newton and connected these observations to all archival data to obtain the best maps in both X-ray continuum and line emission produced so far.

With this, the team was able to characterise in detail the fallout from catastrophic events that have released vast amounts of energy. The forensic study led in particular to the discovery of how enormous X-ray emitting bubbles of plasma, tens of light years across, are impacting their environment, creating giant cavities in the gas, dust and cooler plasma at the Milky Way’s centre.

Mass monster caught red-handed

One of the most telling clues from the X-ray images is a pair of bipolar “lobes” that extend for tens of light years above and below the Galactic plane and are centred on the location of the supermassive black hole. Previous circumstantial evidence had implicated the black hole in this mayhem, but the new findings effectively catch it and its stellar gang red-handed in the act of committing acts of violence. In fact, the sources of matter and energy needed to inflate these bipolar lobes with hot, X-ray emitting gas could be either outflows launched from very near the event horizon of the super-massive black hole, winds from massive stars orbiting around the hole, or catastrophic events associated with the death of massive stars close to it.

Warm plasma in the outskirts of the imaged region

The team also discovered fingerprints of warm plasma in the outskirts of the imaged region (hundreds of light years). This indicates that the acts of violence taking place at the centre of the Milky Way have effects that extend far beyond that region. The newly discovered plasma might be associated with an inhomogeneous hot “atmosphere” of hot gas permeating the Galaxy’s central regions, perhaps fed by continuous or episodic outflows of mass and energy from the Milky Way’s core. Similar structures are occasionally observed at the centres of other galaxies. However, thanks to the proximity of the Milky Way centre, the XMM-Newton maps can directly image this phenomenon in superb detail.

Superbubbles at the galactic heart

Another major disturbance in this unruly region has also been discovered: a few “superbubbles”, gigantic cavities tens of light years across that contain hot plasma emitting soft X-rays. One such region has an energy content of at least 1051 erg (approximately the total energy emitted by the Sun in its 10 billion year lifetime)! The evidence indicates that this enormous structure was inflated over the past tens of thousands years by powerful winds from the most massive stars of the spectacular Quintuplet stars cluster and by catastrophic events such as explosions of massive stars. Such large energy releases have a profound impact on the evolution of interstellar matter at the Galactic centre.

So, while the crime scene reconstruction is still being pieced together, with these new X-ray images the astronomers have a much clearer idea of what might have happened over the past couple billion years – and how our Milky Way might continue to evolve in future. One thing is clear: the violence in the neighbourhood of the Galactic centre will undoubtedly continue well into the future.


Contact

Dr. Gabriele Ponti
Max Planck Institute for Extraterrestrial Physics, Garching
Phone: +49 89 30000-3899

Email: ponti@mpe.mpg.de


Dr. Hannelore Hämmerle
Max Planck Institute for Astrophysics, Garching
Phone: +49 89 30000-3980

Fax: +49 89 30000-3569

Email: pr@mpa-garching.mpg.de


Original publication
G. Ponti, M. R. Morris, R. Terrier, F. Haberl, R. Sturm, M. Clavel, S. Soldi, A. Goldwurm, P. Predehl, K. Nandra, G. Belanger, R. S. Warwick und V. Tatischeff

The XMM-Newton view of the central degrees of the MilkyWay

Monthly Notices of the Royal Astronomical Society, 20 August 2015

Dr. Gabriele Ponti | Max Planck Institute for Extraterrestrial Physics, Garching
Further information:
http://www.mpg.de/9371356/xmm-newton-milky-way

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>