Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The sound of an atom has been captured

12.09.2014

Researchers at Chalmers University of Technology are first to show the use of sound to communicate with an artificial atom. They can thereby demonstrate phenomena from quantum physics with sound taking on the role of light. The results are published by the journal Science.

The interaction between atoms and light is well known and has been studied extensively in the field of quantum optics. However, to achieve the same kind of interaction with sound waves has been a more challenging undertaking. The Chalmers researchers have now succeeded in making acoustic waves couple to an artificial atom. The study was done in collaboration between experimental and theoretical physicists.


On the right, an artificial atom generates sound waves consisting of ripples on the surface of a solid. The sound, known as a surface acoustic wave (SAW) is picked up on the left by a "microphone" composed of interlaced metal fingers. According to theory, the sound consists of a stream of quantum particles, the weakest whisper physically possible. The illustration is not to scale. Credit: Philip Krantz, Krantz NanoArt.

"We have opened a new door into the quantum world by talking and listening to atoms", says Per Delsing, head of the experimental research group. "Our long term goal is to harness quantum physics so that we can benefit from its laws, for example in extremely fast computers. We do this by making electrical circuits which obey quantum laws, that we can control and study."

An artificial atom is an example of such a quantum electrical circuit. Just like a regular atom, it can be charged up with energy which it subsequently emits in the form of a particle. This is usually a particle of light, but the atom in the Chalmers experiment is instead designed to both emit and absorb energy in the form of sound.

"According to the theory, the sound from the atom is divided into quantum particles", says Martin Gustafsson, the article's first author. "Such a particle is the weakest sound that can be detected."

Since sound moves much slower than light, the acoustic atom opens entire new possibilities for taking control over quantum phenomena.

"Due to the slow speed of sound, we will have time to control the quantum particles while they travel" says Martin Gustafsson. "This is difficult to achieve with light, which moves 100,000 times more quickly."

The low speed of sound also implies that it has a short wavelength compared to light. An atom that interacts with light waves is always much smaller than the wavelength. However, compared to the wavelength of sound, the atom can be much larger, which means that its properties can be better controlled. For example, one can design the atom to couple only to certain acoustic frequencies or make the interaction with the sound extremely strong.

The frequency used in the experiment is 4.8 gigahertz, close to the microwave frequencies common in modern wireless networks. In musical terms, this corresponds approximately to a D28, about 20 octaves above the highest note on a grand piano.

At such high frequencies, the wavelength of the sound becomes short enough that it can be guided along the surface of a microchip. On the same chip, the researchers have placed an artificial atom, which is 0.01 millimeters long and made of a superconducting material.

The paper Propagating phonons coupled to an artificial atom is published online by the journal Science, at the Science Express web site.

For more information, please contact:

Martin Gustafsson +46 70 745 9955 mg3465@columbia.edu

Göran Johansson +46 73 060 7338 goran.l.johansson@chalmers.se

Per Delsing +46 70 308 8317 per.delsing@chalmers.se

Additional details about the research:

The sample that the researchers use is made on a substrate of gallium arsenide (GaAs) and contains two important parts. The first one is the superconducting circuit that constitutes the artificial atom. Circuits of this kind can also be used as qubits, the building blocks of a quantum computer. The other essential component is known as an interdigital transducer (IDT). The IDT converts electrical microwaves to sound and vice versa. The sound used in the experiment has the form of surface acoustic waves (SAWs) which appear as ripples on the surface of a solid. The experiments are performed at very low temperatures, near absolute zero (20 millikelvin), so that energy in the form of heat does not disturb the atom.

The theoretical research group, led by Göran Johansson, recently published a paper on how the acoustic atom functions:

The research was funded by the Swedish Research Council, the Knut and Alice Wallenberg Foundation, the European Research Council and the Wenner-Gren Foundations.

Johanna Wilde | idw - Informationsdienst Wissenschaft

Further reports about: Council Science acoustic artificial couple frequencies laws particles physics wavelength waves

More articles from Physics and Astronomy:

nachricht Electrocatalysis can advance green transition
23.01.2017 | Technical University of Denmark

nachricht Quantum optical sensor for the first time tested in space – with a laser system from Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>