Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The sound of an atom has been captured

12.09.2014

Researchers at Chalmers University of Technology are first to show the use of sound to communicate with an artificial atom. They can thereby demonstrate phenomena from quantum physics with sound taking on the role of light. The results are published by the journal Science.

The interaction between atoms and light is well known and has been studied extensively in the field of quantum optics. However, to achieve the same kind of interaction with sound waves has been a more challenging undertaking. The Chalmers researchers have now succeeded in making acoustic waves couple to an artificial atom. The study was done in collaboration between experimental and theoretical physicists.


On the right, an artificial atom generates sound waves consisting of ripples on the surface of a solid. The sound, known as a surface acoustic wave (SAW) is picked up on the left by a "microphone" composed of interlaced metal fingers. According to theory, the sound consists of a stream of quantum particles, the weakest whisper physically possible. The illustration is not to scale. Credit: Philip Krantz, Krantz NanoArt.

"We have opened a new door into the quantum world by talking and listening to atoms", says Per Delsing, head of the experimental research group. "Our long term goal is to harness quantum physics so that we can benefit from its laws, for example in extremely fast computers. We do this by making electrical circuits which obey quantum laws, that we can control and study."

An artificial atom is an example of such a quantum electrical circuit. Just like a regular atom, it can be charged up with energy which it subsequently emits in the form of a particle. This is usually a particle of light, but the atom in the Chalmers experiment is instead designed to both emit and absorb energy in the form of sound.

"According to the theory, the sound from the atom is divided into quantum particles", says Martin Gustafsson, the article's first author. "Such a particle is the weakest sound that can be detected."

Since sound moves much slower than light, the acoustic atom opens entire new possibilities for taking control over quantum phenomena.

"Due to the slow speed of sound, we will have time to control the quantum particles while they travel" says Martin Gustafsson. "This is difficult to achieve with light, which moves 100,000 times more quickly."

The low speed of sound also implies that it has a short wavelength compared to light. An atom that interacts with light waves is always much smaller than the wavelength. However, compared to the wavelength of sound, the atom can be much larger, which means that its properties can be better controlled. For example, one can design the atom to couple only to certain acoustic frequencies or make the interaction with the sound extremely strong.

The frequency used in the experiment is 4.8 gigahertz, close to the microwave frequencies common in modern wireless networks. In musical terms, this corresponds approximately to a D28, about 20 octaves above the highest note on a grand piano.

At such high frequencies, the wavelength of the sound becomes short enough that it can be guided along the surface of a microchip. On the same chip, the researchers have placed an artificial atom, which is 0.01 millimeters long and made of a superconducting material.

The paper Propagating phonons coupled to an artificial atom is published online by the journal Science, at the Science Express web site.

For more information, please contact:

Martin Gustafsson +46 70 745 9955 mg3465@columbia.edu

Göran Johansson +46 73 060 7338 goran.l.johansson@chalmers.se

Per Delsing +46 70 308 8317 per.delsing@chalmers.se

Additional details about the research:

The sample that the researchers use is made on a substrate of gallium arsenide (GaAs) and contains two important parts. The first one is the superconducting circuit that constitutes the artificial atom. Circuits of this kind can also be used as qubits, the building blocks of a quantum computer. The other essential component is known as an interdigital transducer (IDT). The IDT converts electrical microwaves to sound and vice versa. The sound used in the experiment has the form of surface acoustic waves (SAWs) which appear as ripples on the surface of a solid. The experiments are performed at very low temperatures, near absolute zero (20 millikelvin), so that energy in the form of heat does not disturb the atom.

The theoretical research group, led by Göran Johansson, recently published a paper on how the acoustic atom functions:

The research was funded by the Swedish Research Council, the Knut and Alice Wallenberg Foundation, the European Research Council and the Wenner-Gren Foundations.

Johanna Wilde | idw - Informationsdienst Wissenschaft

Further reports about: Council Science acoustic artificial couple frequencies laws particles physics wavelength waves

More articles from Physics and Astronomy:

nachricht Physicists Design Ultrafocused Pulses
27.07.2017 | Universität Innsbruck

nachricht CCNY physicists master unexplored electron property
26.07.2017 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>