Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The ringed asteroid

27.03.2014

Two thin rings made of ice surround the asteroid Chariklo

The asteroid Chariklo, which circles the Sun between the orbits of Saturn and Uranus, is surrounded by two thin rings of ice particles. It is thus the fifth body in the Solar System known to exhibit such a ring system – next to the giant planets Jupiter, Saturn, Uranus, and Neptune – and the first rocky body.


Bright line in the asteroid sky: Chariklo is surrounded by a narrow ring system. During the occultation on 3 June 2013, not only Chariklo itself, but also its ring system briefly dimmed the star's brightness.

© ESO / L. Calçada / Nick Risinger

This result was obtained by an international observational campaign to which scientists from the Max Planck Institute for Solar System Research (MPS) in Germany contributed. The researchers benefited from a rare occultation on 3 June 2013, when the asteroid passed before a star concealing it for several seconds.

“Sometimes in astronomy you get lucky”, says Colin Snodgrass from the MPS looking back on the chance discovery. Snodgrass was part of the research team led by Felipe Braga-Ribas from the Observatório Nacional in Rio de Janeiro (Brazil) that planned to use the occultation on 3 June 2013 to measure the size of asteroid Chariklo.

... more about:
»Jupiter »MPS »Neptune »Saturn »Sun »Uranus »astronomy »measure »orbits

In such a configuration, the asteroid covers the star causing it to disappear briefly – similar to the way the Moon conceals the Sun during a solar eclipse. From the time between the star's vanishing to its reappearence scientists can deduce the asteroid’s size.

To this end, seven observatories in South America pointed their telescopes to the rare alignment on 3 June 2013. However, to everyone's surprise, the star did not just disappear once. In addition, a few seconds before and afterwards its brightness dropped abruptly. Even observatories located outside the viewing-range of the actual occultation observed this effect.

"The analysis of all observational data revealed a surprising result”, says Snodgrass. “Chariklo must be surrounded by a ring." So far, only four bodies with this striking feature are known in the Solar System: the four gas giant planets Jupiter, Saturn, Uranus, and Neptune. With a diameter of only approximately 250 kilometres Chariklo is significantly smaller. The asteroid belongs to a group of small bodies called Centaurs that circle the Sun beyond the orbit of Jupiter.

The measurements performed with the Danish 1.54-metre telescope of the European Southern Observatory in La Silla (Chile) rendered especially precise results: the data show a ring system, which consists of two distinct structures. "Both rings are very thin, almost filigree from an astronomical point of view," says Snodgrass, who analysed this data. A gap of only nine kilometres separates the inner ring with a width of seven kilometres and the outer ring with a width of three kilometres. The inner ring is clearly brighter.

The new results now offer an explanation for earlier, confusing observations of Chariklo. While some researchers had found signatures of frozen water, others were not able to confirm this. "Apparently, the ice is found in the ring system, rather than on the surface," says Snodgrass. Depending on how the body is inclined as seen from the Earth at the observation time, this ring system produces a weak or a strong signal. "The situation is similar to looking at a sheet of paper from the side”, explains Snodgrass. "If you hold it exactly horizontally at the level of your eyes, it is hard to see. Tilt it slightly and it becomes visible.”

How Chariklo’s ring systems originated, however, is still unclear. The researchers believe that it may have formed from the debris of an earlier collision. Also to be determined is whether Chariklo is one of a kind. Within the asteroid belt between the orbits of Mars and Jupiter, which is densely populated by probably more than one million smaller and larger chunks, researchers deem the existence of a be-ringed asteroid as unlikely. "Compared to the gas planets, these small bodies have only a minimal gravitational field binding the components of the rings”, Snodgrass points out. Another body passing nearby could destabilize the entire system. Beyond Jupiter, however, the Solar System is a rather deserted place. “Maybe in years to come we will discover other Centaurs like Chariklo”, speculates Snodgrass.

Contact 

Dr. Birgit Krummheuer

Press and Public Relations

Max Planck Institute for Solar System Research, Göttingen

Phone: +49 551 384979-462

 

Dr. Colin Snodgrass

Max Planck Institute for Solar System Research, Göttingen

Phone: +49 551 384979-493

 

Original publication

 
F. Braga-Ribas, B. Sicardy, J. L. Ortiz, C. Snodgrass et al.
A ring system detected around the Centaur (10199) Chariklo
Nature, Advance Online Publication, 26 March 2014

Dr. Birgit Krummheuer | Max-Planck-Institute
Further information:
http://www.mpg.de/8046395/Chariklo-rings-asteroid

Further reports about: Jupiter MPS Neptune Saturn Sun Uranus astronomy measure orbits

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>