Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The ringed asteroid

27.03.2014

Two thin rings made of ice surround the asteroid Chariklo

The asteroid Chariklo, which circles the Sun between the orbits of Saturn and Uranus, is surrounded by two thin rings of ice particles. It is thus the fifth body in the Solar System known to exhibit such a ring system – next to the giant planets Jupiter, Saturn, Uranus, and Neptune – and the first rocky body.


Bright line in the asteroid sky: Chariklo is surrounded by a narrow ring system. During the occultation on 3 June 2013, not only Chariklo itself, but also its ring system briefly dimmed the star's brightness.

© ESO / L. Calçada / Nick Risinger

This result was obtained by an international observational campaign to which scientists from the Max Planck Institute for Solar System Research (MPS) in Germany contributed. The researchers benefited from a rare occultation on 3 June 2013, when the asteroid passed before a star concealing it for several seconds.

“Sometimes in astronomy you get lucky”, says Colin Snodgrass from the MPS looking back on the chance discovery. Snodgrass was part of the research team led by Felipe Braga-Ribas from the Observatório Nacional in Rio de Janeiro (Brazil) that planned to use the occultation on 3 June 2013 to measure the size of asteroid Chariklo.

... more about:
»Jupiter »MPS »Neptune »Saturn »Sun »Uranus »astronomy »measure »orbits

In such a configuration, the asteroid covers the star causing it to disappear briefly – similar to the way the Moon conceals the Sun during a solar eclipse. From the time between the star's vanishing to its reappearence scientists can deduce the asteroid’s size.

To this end, seven observatories in South America pointed their telescopes to the rare alignment on 3 June 2013. However, to everyone's surprise, the star did not just disappear once. In addition, a few seconds before and afterwards its brightness dropped abruptly. Even observatories located outside the viewing-range of the actual occultation observed this effect.

"The analysis of all observational data revealed a surprising result”, says Snodgrass. “Chariklo must be surrounded by a ring." So far, only four bodies with this striking feature are known in the Solar System: the four gas giant planets Jupiter, Saturn, Uranus, and Neptune. With a diameter of only approximately 250 kilometres Chariklo is significantly smaller. The asteroid belongs to a group of small bodies called Centaurs that circle the Sun beyond the orbit of Jupiter.

The measurements performed with the Danish 1.54-metre telescope of the European Southern Observatory in La Silla (Chile) rendered especially precise results: the data show a ring system, which consists of two distinct structures. "Both rings are very thin, almost filigree from an astronomical point of view," says Snodgrass, who analysed this data. A gap of only nine kilometres separates the inner ring with a width of seven kilometres and the outer ring with a width of three kilometres. The inner ring is clearly brighter.

The new results now offer an explanation for earlier, confusing observations of Chariklo. While some researchers had found signatures of frozen water, others were not able to confirm this. "Apparently, the ice is found in the ring system, rather than on the surface," says Snodgrass. Depending on how the body is inclined as seen from the Earth at the observation time, this ring system produces a weak or a strong signal. "The situation is similar to looking at a sheet of paper from the side”, explains Snodgrass. "If you hold it exactly horizontally at the level of your eyes, it is hard to see. Tilt it slightly and it becomes visible.”

How Chariklo’s ring systems originated, however, is still unclear. The researchers believe that it may have formed from the debris of an earlier collision. Also to be determined is whether Chariklo is one of a kind. Within the asteroid belt between the orbits of Mars and Jupiter, which is densely populated by probably more than one million smaller and larger chunks, researchers deem the existence of a be-ringed asteroid as unlikely. "Compared to the gas planets, these small bodies have only a minimal gravitational field binding the components of the rings”, Snodgrass points out. Another body passing nearby could destabilize the entire system. Beyond Jupiter, however, the Solar System is a rather deserted place. “Maybe in years to come we will discover other Centaurs like Chariklo”, speculates Snodgrass.

Contact 

Dr. Birgit Krummheuer

Press and Public Relations

Max Planck Institute for Solar System Research, Göttingen

Phone: +49 551 384979-462

 

Dr. Colin Snodgrass

Max Planck Institute for Solar System Research, Göttingen

Phone: +49 551 384979-493

 

Original publication

 
F. Braga-Ribas, B. Sicardy, J. L. Ortiz, C. Snodgrass et al.
A ring system detected around the Centaur (10199) Chariklo
Nature, Advance Online Publication, 26 March 2014

Dr. Birgit Krummheuer | Max-Planck-Institute
Further information:
http://www.mpg.de/8046395/Chariklo-rings-asteroid

Further reports about: Jupiter MPS Neptune Saturn Sun Uranus astronomy measure orbits

More articles from Physics and Astronomy:

nachricht Discovery of an Extragalactic Hot Molecular Core
29.09.2016 | National Astronomical Observatory of Japan

nachricht Swiss space research reaches for the sky
29.09.2016 | Schweizerischer Nationalfonds SNF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>