Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Microscopic Topography of Ink on Paper

17.04.2015

Researchers have analyzed the varying thickness of printed toner in unprecedented 3-D detail, yielding insights that could lead to higher quality, less expensive and more environmentally-friendly glossy and non-glossy papers

A team of Finnish scientists has found a new way to examine the ancient art of putting ink to paper in unprecedented 3-D detail. The technique could improve scientists' understanding of how ink sticks to paper and ultimately lead to higher quality, less expensive and more environmentally-friendly printed products.


Markko Myllys/University of Jyvaskyla

This image shows a 3-D visualization of the toner layer on top of coated paper. The dark blue areas show thin layers of toner, whereas the yellow shows thicker layers.

Using modern X-ray and laser-based technologies, the researchers created a nano-scale map of the varying thickness of toner ink on paper. They discovered that wood fibers protruding from the paper received relatively thin coatings of ink. In general, they also found the toner thickness was dictated mainly by the local changes in roughness, rather than the chemical variations caused by the paper's uneven glossy finish.

The team describes their results in a paper published in the Journal of Applied Physics, from AIP Publishing.

"We believe that this gives new insight, especially on how the topography of paper impacts the ink setting or consolidation," said Markko Myllys, an applied physicist at the University of Jyvaskyla in Finland. "This in turn helps us understand how glossy and non-glossy printed surfaces should be made."

Intricate Ink and Paper Microstructures

To achieve their detailed picture of ink thickness, the researchers first examined the underlying paper with X-ray microtomography, a smaller cousin of the CT scanning technology used in hospitals to produce images of the inside of the body.

To analyze the cyan ink layers, the researchers used two additional technologies: optical profilometry, which bounced a light beam off the surface of the ink to obtain a surface profile, and laser ablation, which zapped away controlled amounts of ink with a laser to determine the ink depth.

Although none of the imaging techniques are themselves new, the researchers were the first to combine all three to achieve a complete, high-resolution 3-D image of the intricate ink and paper microstructures.

The final images resemble a rugged mountain landscape, with the higher peaks generally showing thinner coatings of ink, and the valleys showing thicker pools.

The researchers found the typical ink layer was approximately 2.5 micrometers deep, about 1/40 the thickness of an average sheet of paper, but with relatively large spatial variations between the thickest and thinnest areas.

Knowing how topographical variations affect ink thickness will help the printing industry create more environmentally-friendly and less energy-demanding ink and optimize the size distribution of ink particles, Myllys said. It could also help the papermaking industry design more sustainable paper and packaging, for example from recycled components, while still maintaining the quality needed to make ink stick well. Additionally, the papermaking industry could use the findings to help decide how best to incorporate smart and novel features into paper, Myllys said.

The team believes the imaging methods they used can also be adapted to effectively analyze the thickness variations in other types of thin films, including those found in microelectronics, wear-resistant coatings and solar panels.

"This result can certainly be generalized, and that makes it actually quite interesting," Myllys said. "Thickness variations of thin films are crucial in many applications, but the 3-D analysis has been very difficult or impossible until now."

The article, "X-ray microtomography and laser ablation in the analysis of ink distribution in coated paper," is authored by M. Myllys, H. Hakkanen, J. Korppi-Tommola, K. Backfolk, P. Sirvio and J. Timonen. It will be published in the Journal of Applied Physics on April 14, 2015 (DOI: 10.1063/1.4916588). After that date, it can be accessed at: http://scitation.aip.org/content/aip/journal/jap/117/14/10.1063/1.4916588

The authors of this paper are affiliated with the University of Jyvaskyla, the Imatra Research Centre, the Lappeenranta University of Technology and ITMO University.

ABOUT THE JOURNAL

Journal of Applied Physics is an influential international journal publishing significant new experimental and theoretical results of applied physics research. See: http://jap.aip.org

Contact Information
Jason Socrates Bardi
American Institute of Physics
jbardi@aip.org
240-535-4954
@jasonbardi

Jason Socrates Bardi | newswise

More articles from Physics and Astronomy:

nachricht Light-emitting bubbles captured in the wild
28.02.2017 | Georg-August-Universität Göttingen

nachricht Scientists reach back in time to discover some of the most power-packed galaxies
28.02.2017 | Clemson University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>