Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The LZH develops a fiber amplifier for measuring gravitational waves in space

20.06.2014

When the European Space Agency (ESA) sends the “3rd Large Mission” into space in 2034, its goal will be to detect gravitational waves. Scientists at the Laser Zentrum Hannover e. V. (LZH) have now begun to develop fiber amplifiers for the required lasers.

The task of the Single-Frequency Laser Group of the LZH almost sounds trivial: The fiber amplifiers developed by this group should be used to post-amplify a special laser with a low output. However, the general framework of the project eLISA makes laser development a real challenge: The choice of optical components that can be used is highly limited.


In the project eLISA, a mother satellite sends laser beams to two daughter satellites. From the returning beams, gravitational waves should be calculated.

Illustration: AEI/MM/exozet

Challenge: Simple and fit for use in space

Since the availability of resources in space is very limited, the amplifier in planning must work very efficiently”, says the head of the group Dr. Peter Weßels, when addressing the task. “At the same time, the setup must be kept as simple as possible, so the laser can be qualified for use in space.”

... more about:
»LZH »Laser »Space »fiber »gravitational »movements »satellite »waves

Detecting miniscule movements over enormous distances

Despite the high limitations, the laser must provide high performance. The laser beam must travel over a distance of around one million kilometers between the mother satellite and both daughter satellites. Once it arrives, the beam is regenerated and sent back the same distance.

The differences in the phase of the returning light can be used to conclude distance changes in space on the subatomic scale, the gravitational waves.

The scientists working with Dr. Peter Weßels want to develop a so-called „Engineering Qualification Modell“ within the next three years. Such a model is not yet completely ready for use in space, but the setup and design is quite similar to the later model.

Apart from the LZH, the Fundação Faculdade de Ciências da Universidade de Lisboa, Portugal, and the Czech Space Research Centre s.r.o., Czech Republic, are working on the development of the laser system for the eLISA mission. The developmental project is headed by the Portuguese company LusoSpace Lda.

Weitere Informationen:

https://www.elisascience.org/ - eLISA website
https://www.elisascience.org/multimedia/image/elisa-spacecraft-two-laser-arms - illustration source

Lena Bennefeld | idw - Informationsdienst Wissenschaft

Further reports about: LZH Laser Space fiber gravitational movements satellite waves

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>