Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The glory of Venus

11.03.2014

A rainbow-like light phenomenon observed on Venus cloud tops helps to identify the components of the planet’s acidic cloud cover

When travelling above the clouds, airplane passengers sometimes witness a glorious moment: a light phenomenon similar to a ring-shaped rainbow. Droplets in the clouds back-scattering the sunlight are responsible for this appearance. A team of scientists led by the Max Planck Institute for Solar System Research (MPS) in Göttingen have now fully imaged a glory on Venus – and thus for the first time on a planet other than Earth. The data was obtained by ESA’s space probe Venus Express. The data imply that the sulfuric acid in Venus’ cloud tops could additionally contain pure sulfur or iron chloride.


Glory and the goddess of love: The center of the concentric coloured circles is the pale yellow patch in the left half of the image. The glory extends over at least 1200 km. Not only visible light, but all wavelengths contribute to the glory. In order to also make the ultraviolet and infrared contributions visible, in this false color representation each wavelength in the camera data is accounted for by a different colour.

© ESA/MPS/DLR/IDA


A glory on Earth: Coloured, concentric circles surround the shadow of the aircraft resembling a ring-shaped rainbow.

© Wikimedia Commons

The veil of clouds surrounding Venus is as beautiful as it is hostile to life. Sulfuric acid constitutes their main component. Together with the planet’s dense atmosphere composed mainly of carbon dioxide, this cloud cover causes Venus’ extreme greenhouse effect. Temperatures of more than 400 degrees Celsius are common on the planet’s surface. The exact composition of the creamy-yellow clouds is still unclear. Almost 90 years ago, ground-based observations had shown that these clouds “swallow” ultraviolet light of certain wavelengths. Sulfuric acid alone cannot be responsible for this effect.

The list of possible candidates for the unknown substance is long: for example hydrobromic acid, amorphous sulfur, gaseous chloride and even bacteria have been suggested. But no one substance could be identified with certainty. Now, the glory spotted in the data of Venus Express’s Venus Monitoring Camera may offer help. After all, the phenomenon occurs only under very special conditions: the droplets (or possibly solid crystals) in the clouds must be absolutely spherical and of uniform size. The width of the concentric rings and their relative intensities allow conclusion with regard to their size and refractive properties.

The most important precondition necessary to observe a glory is the observing position, explains Dr. Wojciech Markiewicz from the MPS, first author of the new study. This holds true both on Earth and Venus. The observer must be accurately located on a line between the clouds and the Sun. The droplets in the clouds scatter the sunlight back; the observer sees his own shadow on the cloud tops surrounded by colorful concentric circles.

Since April 2011, the Venus Express spacecraft, that has been orbiting Venus since 2006, has been maneuvered into a suitable observing position more than twelve times. “In principle, our image, too, would show the shadow of the observing spacecraft”, says Markiewicz. However, approximately 6000 kilometers lay between space probe and cloud tops. From this distance, the shadow of the spacecraft appears so small, that the camera cannot resolve it.

The resulting image is not only impressive, but also of high scientific value. In computer simulations the researchers re-enacted the optical processes leading to the glory and tried to reconstruct their image as closely as possible. To this end, they varied parameters such as size and refractive index of the droplets. “In our calculations we could not reconstruct the image with droplets consisting of sulfuric acid alone”, says Markiewicz. The scientists’ calculations show that an additional substance must be present. This may well be the long-sought unknown UV-absorber. Especially droplets of sulfuric acid with a core of iron chloride or an outer layer of pure sulfur proved to be promising candidates.

Contact 

Dr. Birgit Krummheuer

Press Officer

Max Planck Institute for Solar System Research, Göttingen

Phone: +49 5556 979-462
Fax: +49 5556 979-240

 

Dr. Wojtek Markiewicz

Max Planck Institute for Solar System Research, Göttingen

Phone: +49 5556 979-294

 

Original publication

 
W.J. Markiewicz, E. Petrova, O. Shalygina, M. Almeida, D.V. Titov, S.S. Limaye, N. Ignatiev, T. Roatsch, K.D. Matz
Glory on Venus Cloud Tops and the Unkown UV Absorber
Icarus, online advance publication, 6 March 2014

Dr. Birgit Krummheuer | Max-Planck-Institut
Further information:
http://www.mpg.de/8008100/Venus-glory

Further reports about: Earth MPS Phone acid chloride clouds droplets phenomenon publication spacecraft sulfuric

More articles from Physics and Astronomy:

nachricht Russian physicists create a high-precision 'quantum ruler'
24.06.2016 | Moscow Institute of Physics and Technology

nachricht Hubble confirms new dark spot on Neptune
24.06.2016 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First experimental quantum simulation of particle physics phenomena

Physicists in Innsbruck have realized the first quantum simulation of lattice gauge theories, building a bridge between high-energy theory and atomic physics. In the journal Nature, Rainer Blatt‘s and Peter Zoller’s research teams describe how they simulated the creation of elementary particle pairs out of the vacuum by using a quantum computer.

Elementary particles are the fundamental buildings blocks of matter, and their properties are described by the Standard Model of particle physics. The...

Im Focus: Is There Life On Mars?

Survivalist back from Space - 18 months on the outer skin of the ISS

A year and a half on the outer wall of the International Space Station ISS in altitude of 400 kilometers is a real challenge. Whether a primordial bacterium...

Im Focus: CWRU physicists deploy magnetic vortex to control electron spin

Potential technology for quantum computing, keener sensors

Researchers at Case Western Reserve University have developed a way to swiftly and precisely control electron spins at room temperature.

Im Focus: Physicists measured something new in the radioactive decay of neutrons

The experiment inspired theorists; future ones could reveal new physics

A physics experiment performed at the National Institute of Standards and Technology (NIST) has enhanced scientists' understanding of how free neutrons decay...

Im Focus: Discovery of gold nanocluster 'double' hints at other shape changing particles

New analysis approach brings two unique atomic structures into focus

Chemically the same, graphite and diamonds are as physically distinct as two minerals can be, one opaque and soft, the other translucent and hard. What makes...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

 
Latest News

Nanoscientists develop the 'ultimate discovery tool'

24.06.2016 | Materials Sciences

Russian physicists create a high-precision 'quantum ruler'

24.06.2016 | Physics and Astronomy

Hubble confirms new dark spot on Neptune

24.06.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>