Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The glory of Venus

11.03.2014

A rainbow-like light phenomenon observed on Venus cloud tops helps to identify the components of the planet’s acidic cloud cover


Glory and the goddess of love: The center of the concentric coloured circles is the pale yellow patch in the left half of the image. The glory extends over at least 1200 km. Not only visible light, but all wavelengths contribute to the glory. In order to also make the ultraviolet and infrared contributions visible, in this false color representation each wavelength in the camera data is accounted for by a different colour.

© ESA/MPS/DLR/IDA


A glory on Earth: Coloured, concentric circles surround the shadow of the aircraft resembling a ring-shaped rainbow.

© Wikimedia Commons

When travelling above the clouds, airplane passengers sometimes witness a glorious moment: a light phenomenon similar to a ring-shaped rainbow. Droplets in the clouds back-scattering the sunlight are responsible for this appearance. A team of scientists led by the Max Planck Institute for Solar System Research (MPS) in Göttingen have now fully imaged a glory on Venus – and thus for the first time on a planet other than Earth. The data was obtained by ESA’s space probe Venus Express. The data imply that the sulfuric acid in Venus’ cloud tops could additionally contain pure sulfur or iron chloride.

The veil of clouds surrounding Venus is as beautiful as it is hostile to life. Sulfuric acid constitutes their main component. Together with the planet’s dense atmosphere composed mainly of carbon dioxide, this cloud cover causes Venus’ extreme greenhouse effect. Temperatures of more than 400 degrees Celsius are common on the planet’s surface. The exact composition of the creamy-yellow clouds is still unclear. Almost 90 years ago, ground-based observations had shown that these clouds “swallow” ultraviolet light of certain wavelengths. Sulfuric acid alone cannot be responsible for this effect.

The list of possible candidates for the unknown substance is long: for example hydrobromic acid, amorphous sulfur, gaseous chloride and even bacteria have been suggested. But no one substance could be identified with certainty. Now, the glory spotted in the data of Venus Express’s Venus Monitoring Camera may offer help. After all, the phenomenon occurs only under very special conditions: the droplets (or possibly solid crystals) in the clouds must be absolutely spherical and of uniform size. The width of the concentric rings and their relative intensities allow conclusion with regard to their size and refractive properties.

The most important precondition necessary to observe a glory is the observing position, explains Dr. Wojciech Markiewicz from the MPS, first author of the new study. This holds true both on Earth and Venus. The observer must be accurately located on a line between the clouds and the Sun. The droplets in the clouds scatter the sunlight back; the observer sees his own shadow on the cloud tops surrounded by colorful concentric circles.

Since April 2011, the Venus Express spacecraft, that has been orbiting Venus since 2006, has been maneuvered into a suitable observing position more than twelve times. “In principle, our image, too, would show the shadow of the observing spacecraft”, says Markiewicz. However, approximately 6000 kilometers lay between space probe and cloud tops. From this distance, the shadow of the spacecraft appears so small, that the camera cannot resolve it.

The resulting image is not only impressive, but also of high scientific value. In computer simulations the researchers re-enacted the optical processes leading to the glory and tried to reconstruct their image as closely as possible. To this end, they varied parameters such as size and refractive index of the droplets. “In our calculations we could not reconstruct the image with droplets consisting of sulfuric acid alone”, says Markiewicz. The scientists’ calculations show that an additional substance must be present. This may well be the long-sought unknown UV-absorber. Especially droplets of sulfuric acid with a core of iron chloride or an outer layer of pure sulfur proved to be promising candidates.

Contact 

Dr. Birgit Krummheuer

Press Officer

Max Planck Institute for Solar System Research, Göttingen

Phone: +49 5556 979-462
Fax: +49 5556 979-240

 

Dr. Wojtek Markiewicz

Max Planck Institute for Solar System Research, Göttingen

Phone: +49 5556 979-294

 

Original publication

 
W.J. Markiewicz, E. Petrova, O. Shalygina, M. Almeida, D.V. Titov, S.S. Limaye, N. Ignatiev, T. Roatsch, K.D. Matz
Glory on Venus Cloud Tops and the Unkown UV Absorber
Icarus, online advance publication, 6 March 2014

Dr. Birgit Krummheuer | Max-Planck-Institut
Further information:
http://www.mpg.de/8008100/Venus-glory

Further reports about: Earth MPS Phone Venus acid chloride clouds droplets phenomenon publication spacecraft sulfuric

More articles from Physics and Astronomy:

nachricht New mass map of a distant galaxy cluster is the most precise yet
25.07.2014 | ESA/Hubble Information Centre

nachricht Hubble Finds Three Surprisingly Dry Exoplanets
25.07.2014 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Anzeige

Anzeige

Event News

9th European Wood-Based Panel Symposium 2014 – meeting point for the wood-based material branch

24.07.2014 | Event News

“Lens on Life” - Artists and Scientists Explore Cell Divison

08.07.2014 | Event News

First International Conference on Consumer Research | ICCR 2014: Early bird deadline July 31, 2014

08.07.2014 | Event News

 
Latest News

Parched West is using up underground water, UCI, NASA find

25.07.2014 | Earth Sciences

ORNL study reveals new characteristics of complex oxide surfaces

25.07.2014 | Materials Sciences

New mass map of a distant galaxy cluster is the most precise yet

25.07.2014 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>