Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The glory of Venus

11.03.2014

A rainbow-like light phenomenon observed on Venus cloud tops helps to identify the components of the planet’s acidic cloud cover

When travelling above the clouds, airplane passengers sometimes witness a glorious moment: a light phenomenon similar to a ring-shaped rainbow. Droplets in the clouds back-scattering the sunlight are responsible for this appearance. A team of scientists led by the Max Planck Institute for Solar System Research (MPS) in Göttingen have now fully imaged a glory on Venus – and thus for the first time on a planet other than Earth. The data was obtained by ESA’s space probe Venus Express. The data imply that the sulfuric acid in Venus’ cloud tops could additionally contain pure sulfur or iron chloride.


Glory and the goddess of love: The center of the concentric coloured circles is the pale yellow patch in the left half of the image. The glory extends over at least 1200 km. Not only visible light, but all wavelengths contribute to the glory. In order to also make the ultraviolet and infrared contributions visible, in this false color representation each wavelength in the camera data is accounted for by a different colour.

© ESA/MPS/DLR/IDA


A glory on Earth: Coloured, concentric circles surround the shadow of the aircraft resembling a ring-shaped rainbow.

© Wikimedia Commons

The veil of clouds surrounding Venus is as beautiful as it is hostile to life. Sulfuric acid constitutes their main component. Together with the planet’s dense atmosphere composed mainly of carbon dioxide, this cloud cover causes Venus’ extreme greenhouse effect. Temperatures of more than 400 degrees Celsius are common on the planet’s surface. The exact composition of the creamy-yellow clouds is still unclear. Almost 90 years ago, ground-based observations had shown that these clouds “swallow” ultraviolet light of certain wavelengths. Sulfuric acid alone cannot be responsible for this effect.

The list of possible candidates for the unknown substance is long: for example hydrobromic acid, amorphous sulfur, gaseous chloride and even bacteria have been suggested. But no one substance could be identified with certainty. Now, the glory spotted in the data of Venus Express’s Venus Monitoring Camera may offer help. After all, the phenomenon occurs only under very special conditions: the droplets (or possibly solid crystals) in the clouds must be absolutely spherical and of uniform size. The width of the concentric rings and their relative intensities allow conclusion with regard to their size and refractive properties.

The most important precondition necessary to observe a glory is the observing position, explains Dr. Wojciech Markiewicz from the MPS, first author of the new study. This holds true both on Earth and Venus. The observer must be accurately located on a line between the clouds and the Sun. The droplets in the clouds scatter the sunlight back; the observer sees his own shadow on the cloud tops surrounded by colorful concentric circles.

Since April 2011, the Venus Express spacecraft, that has been orbiting Venus since 2006, has been maneuvered into a suitable observing position more than twelve times. “In principle, our image, too, would show the shadow of the observing spacecraft”, says Markiewicz. However, approximately 6000 kilometers lay between space probe and cloud tops. From this distance, the shadow of the spacecraft appears so small, that the camera cannot resolve it.

The resulting image is not only impressive, but also of high scientific value. In computer simulations the researchers re-enacted the optical processes leading to the glory and tried to reconstruct their image as closely as possible. To this end, they varied parameters such as size and refractive index of the droplets. “In our calculations we could not reconstruct the image with droplets consisting of sulfuric acid alone”, says Markiewicz. The scientists’ calculations show that an additional substance must be present. This may well be the long-sought unknown UV-absorber. Especially droplets of sulfuric acid with a core of iron chloride or an outer layer of pure sulfur proved to be promising candidates.

Contact 

Dr. Birgit Krummheuer

Press Officer

Max Planck Institute for Solar System Research, Göttingen

Phone: +49 5556 979-462
Fax: +49 5556 979-240

 

Dr. Wojtek Markiewicz

Max Planck Institute for Solar System Research, Göttingen

Phone: +49 5556 979-294

 

Original publication

 
W.J. Markiewicz, E. Petrova, O. Shalygina, M. Almeida, D.V. Titov, S.S. Limaye, N. Ignatiev, T. Roatsch, K.D. Matz
Glory on Venus Cloud Tops and the Unkown UV Absorber
Icarus, online advance publication, 6 March 2014

Dr. Birgit Krummheuer | Max-Planck-Institut
Further information:
http://www.mpg.de/8008100/Venus-glory

Further reports about: Earth MPS Phone acid chloride clouds droplets phenomenon publication spacecraft sulfuric

More articles from Physics and Astronomy:

nachricht First detection of lithium from an exploding star
29.07.2015 | ESO

nachricht Lobster-Eye imager detects soft X-ray emissions
29.07.2015 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

Im Focus: NASA satellite camera provides 'EPIC' view of Earth

A NASA camera on the Deep Space Climate Observatory (DSCOVR) satellite has returned its first view of the entire sunlit side of Earth from one million miles away.

The color images of Earth from NASA's Earth Polychromatic Imaging Camera (EPIC) are generated by combining three separate images to create a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Lobster-Eye imager detects soft X-ray emissions

29.07.2015 | Physics and Astronomy

First detection of lithium from an exploding star

29.07.2015 | Physics and Astronomy

Controlling phase changes in solids

29.07.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>