Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The bubbling of order

14.07.2017

Molecular order promotes cavitation

Cavitation describes the formation of small bubbles in liquids and their subsequent decay. The Dutch physicist Christiaan Huygens first discovered the phenomenon of cavitation in 1672, and researchers in hydrodynamics have been busy understanding this process ever since. Cavitation is the cause of very practical problems because when the bubbles collapse rapidly, they release enormous energies.


Growth of a cavitation domain

(c) MPIDS


Disclination lines in the liquid crystal flowing around an obstacle in a microfluidic channel

(c) MPIDS

For example, cavitation bubbles cause annual repair costs of millions of dollars to propellers spinning in sea water. The so-called cavitation fracture occurs because the surface is damaged by the high mechanical stresses. A research-team from the Max Planck Institute for Dynamics and Self-Organization (MPIDS) in Göttingen, the Technical University of Berlin (TU Berlin) and the Swiss Federal Institute of Technology Zurich (ETH Zurich) has now shown that cavitation can also occur at a very small scale in liquids with molecular order.

Thus, liquid crystals can very easily cavitate when flowing through microfluidic channels. Based on their results, the researchers hope in the future to develop bubble formation in different fluids, as well as to better understand processes in the cell, since biological building blocks of the cell have similar properties as liquid crystals. These results are now published by Tillmann Stieger and collaborators in the journal Nature Communications.

Order is the key

If a liquid moves quickly with respect to a solid object, the pressure drops. If this pressure drop reaches the vapor pressure, cavitation occurs. The phenomenon is known as hydrodynamic cavitation. The team of researchers from Göttingen, Berlin and Zurich has now found that cavitation in liquid crystals occurs already under very mild conditions - in contrast to the hitherto known aggressive methods. Due to their material properties, the molecules of the liquid crystals arrange parallel to one another in the flow, so that the formation of bubbles is energetically favored.

As in the big so in the small

This work originates from investigations by Dr. Anupam Sengupta during his PhD work at the MPIDS, who is now working as Human Frontiers Cross-Disciplinary Fellow in Zurich. The researchers discovered that liquid crystals cavitate very easily when they flow in tiny channels. In their experiments, they flowed liquid crystals in tiny channels with a diameter of 100 micrometers (the width of a hair). Downstream of an obstruction in the channel a pressure drop forms, where the scientists observed cavitation. Dr. Sengupta teamed up with Dr. Marco G. Mazza, head of a research group in the Department of Complex Fluids at the MPIDS, to carry out molecular dynamics simulations and study the problem theoretically.

The researchers observed that the more the molecules are aligned in the liquid crystals, the easier it is to cavitate. This means that the degree of order of the liquid crystals regulates the cavitation process. This discovery has implications for a serious limitation of microfluidics, namely the mixing of liquids in microfluidic devices. In the case of flows at the microscale, the mixing occurs mainly by molecular diffusion, a very slow process. The growth of cavitation bubbles and their breakdown can considerably accelerate the mixing process.

"This is an exciting new development in the more-than-100 year old field of liquid crystal research", emphasizes Dr. Marco G. Mazza. “Our work opens new possibilities to manipulate hydrodynamic flow through the order and topology of liquid crystals. This will be a direction we will pursue in the future, says Mazza concluding.

Weitere Informationen:

http://www.ds.mpg.de/3118513/170703_PM_cavitation
https://www.nature.com/articles/ncomms15550.pdf

Carolin Hoffrogge | Max-Planck-Institut für Dynamik und Selbstorganisation

More articles from Physics and Astronomy:

nachricht Hubble sees Neptune's mysterious shrinking storm
16.02.2018 | NASA/Goddard Space Flight Center

nachricht Supermassive black hole model predicts characteristic light signals at cusp of collision
15.02.2018 | Rochester Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>