Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The birth of massive stars is accompanied by strong luminosity bursts

07.11.2016

Astronomers of the Universities of Tübingen and Vienna are investigating the basic principles of the formation of stars

“How do massive stars form?” is one of the fundamental questions in modern astrophysics, because these massive stars govern the energy budget of their host galaxies. Using numerical simulations, Professor Wilhelm Kley, Dr. Rolf Kuiper and Dr. Dominique Meyer from the Institute for Astronomy and Astrophysics at the University of Tübingen in a collaboration with Dr. Eduard Vorobyov from the Institute for Astrophysics at the University of Vienna revealed new components of the formation of massive stars, which were already known from the formation process of low-mass as well as primordial stars. The study has now been published in the peer-review journal Monthly Notices of the Royal Astronomical Society.


Visualization of the unstable accretion disk around a forming massive star.

Image: Institute for Astronomy and Astrophysics, Tübingen University

The birth of massive stars is still a mystery to us, because these stars are embedded in an extremely dense medium of gas and dust, says Rolf Kuiper, the leader of the Emmy Noether Research Group for Massive Star Formation, funded by the German Research Foundation (DFG).

“This opaque envelope makes it difficult to directly observe the birth process even with modern telescopes. In other words, we see the cradle in which these stars are born, but we can’t detect the stars themselves.” Therefore, the researchers modeled the birth process within a numerical simulation. For this ambitious, computationally expensive study they made use of high-performance computers within the bwHPC initiative of the state of Baden-Württemberg.

The simulation starts with a cloud of gas and dust, which collapses under its own gravity and eventually forms a so-called accretion disk around the hot young star. The material in such a disk rotates around the central star and slowly transports gas and dust towards it. For the first time, the resolution of these simulations was sufficient to infer the formation of high-density clumps within the gravitationally unstable disk. Once formed, these clumps start to migrate through the disk and finally sink into the central star. “Like throwing logs into a fireplace, these episodes of clump consumption produce violent luminosity outbursts outshining the collective effect of one hundred thousand Suns,“ says Eduard Vorobyov.

A similar process of episodical luminosity bursts was already known with respect to the formation of the first stars in the Universe and for low-mass stars like our Sun. The new investigation suggests now that the formation of stars of any kind and epoch are controlled by the same universal processes: “It is amazing to see these similarities, as if star formation on all scales and epochs is controlled by a common DNA forged in the early Universe,“ says Dominique Meyer, the first author of the study and post-doc in the Emmy Noether Group. The clumps, explains Wilhelm Kley, are also excellent candidates for the formation of Solar-type companions to massive stars: “These companions will also influence their future evolution.”

The results will help to develop new observing strategies for detecting these luminosity outbursts – and even for directly imaging the high-density clumps in accretion disks around very young massive stars. This will be a task for modern observing facilities such as the Atacama Large Millimeter Array (ALMA) of the European Southern Observatory (ESO) or the future European Extremely Large Telescope (E-ELT).

Publication:
D. M.-A. Meyer, E. I. Vorobyov, R. Kuiper and W. Kley: On the existence of accretion-driven bursts in massive star formation. Monthly Notices of the Royal Astronomical Society, DOI: 10.1093/mnrasl/slw187, http://mnrasl.oxfordjournals.org/content/early/2016/09/15/mnrasl.slw187.abstract

Contact:
Prof. Dr. Wilhelm Kley
University of Tübingen
Institute for Astronomy and Astrophysics
Phone +49 7071 29-74007
wilhelm.kley[at]uni-tuebingen.de

Dr. Rolf Kuiper
University of Tübingen
Institute for Astronomy and Astrophysics
Emmy Noether Research Group for Massive Star Formation
Phone + 49 7071 29-75490
rolf.kuiper[at]uni-tuebingen.de

Dr. Eduard Vorobyov
University of Vienna
Institute for Astrophysics – Star and Planet Formation
Phone + 43 1 4277 538 15
eduard.vorobiev[at]univie.ac.at

Weitere Informationen:

http://www.tat.physik.uni-tuebingen.de/~msf - Emmy Noether Research Group on Massive Star Formation
http://www.physik.uni-tuebingen.de/institute/astronomie-astrophysik/institut.htm... - Institute for Astronomy and Astrophysics Tübingen
http://www.univie.ac.at/stars/ - Star & Planet Formation Group of the Department of Astrophysics Vienna
http://www.bwhpc-c5.de/ - High-performance Cluster Coordination bwGrid Baden-Württemberg

Dr. Karl Guido Rijkhoek | idw - Informationsdienst Wissenschaft

Further reports about: astrophysics luminosity massive stars star formation

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>