Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Texas A&M astronomers help find distant galaxy cluster to shed light on early universe

A decade ago, Houston businessman and philanthropist George P. Mitchell was so certain there were big discoveries to be made in physics and astronomy and that they should come out of Texas A&M University, he put money on it, endowing the George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy to bring the world's most eminent minds in physics and astronomy to Aggieland.

Last June that investment paid off when an international collaboration featuring Texas A&M astronomers Dr. Kim-Vy Tran and Dr. Casey Papovich gathered at Mitchell's Cook's Branch Conservancy (a picturesque 6,000-acre preserve in the east Texas Pineywoods northwest of Houston) for a team brainstorm that recently resulted in the breakthrough discovery of the most distant galaxy cluster found to date.

"This discovery was actually made at Cook's Branch this past June," Tran says. "We were just starting to analyze the data, and Lee [Spitler] had just found this object, so we started talking about it that day."

Galaxy clusters, known as the "urban centers" of the universe, today may contain thousands of galaxies and are viewed as important building blocks with the power to unlock the mysteries of galaxy evolution and conditions in the universe's earliest moments. Tran notes this cluster is located 10.5 billion light-years away from our own Milky Way galaxy and is made up of a dense concentration of 30 galaxies that is the seed for a much bigger "city."

"Our galaxy cluster is observed when the universe was only three billion years old," says Spitler, an astrophysicist at Swinburne University of Technology in Australia and lead author of the team's study, known as the FourStar Galaxy Evolution Survey (Z-FOURGE). "This means it is still young and should continue to grow into an extremely dense structure containing many more galaxies."

The team's findings, funded in part through the National Science Foundation, will be published in the Astrophysical Journal Letters.

Much like Mitchell's vision of Texas A&M as a diamond in the rough, the Z-FOURGE team likewise discovered their recent find hidden in plain sight — essentially the middle of one of the most well-studied regions in the sky. Located near the star constellation Leo, Spitler notes this region has been carefully examined for thousands of hours using all major observing facilities on the ground and in space, including nearly one month of observing time from the Hubble Space Telescope.

Papovich credits the team's discovery to solid science and analysis armed with modern technology — in this case, a new camera built by Z-FOURGE collaborators at Carnegie Observatories. The camera, dubbed FourStar and installed in December 2010 on the Magellan 6.5-meter telescope in Chile, features five specially designed infrared filters that deliver an unprecedentedly precise combination of wavelength resolution and low-light sensitivity, thereby enabling the team to accurately measure the distances to thousands of different galaxies at a time, including those too faint to be detected through previous methods.

"Most other surveys were just looking at the tip of the iceberg," Tran explains. "The modern technology contained in this camera enabled us to detect the faintest light possible, allowing us to see much more of the iceberg than previously revealed.

"It's like we're using a comb to sift through the very distant universe. The combination of filters and depth provided by this camera give us the equivalent of more teeth, resulting in better measurements and more accurate results."

From the first six months of the survey, the team obtained accurate distances for faint galaxies across a region about one-fifth the size of the Moon as seen from Earth. Though the area is relatively small, they found roughly a thousand galaxies more than 10.5 billion light-years away.

"These new filters are a novel approach; it's a bit like being able to do a CAT scan of the sky to rapidly make a 3-D picture of the early universe," says Swinburne's Karl Glazebrook, who is leading the Australian component of the international collaboration formed in 2009.

The Z-FOURGE survey is led by Dr. Ivo Labbe at Leiden Observatories in The Netherlands.

"These are the first steps of accurately measuring the rate at which these large urban cities formed in a dark-matter-dominated universe," Papovich says. "The rate at which they come together tests our understanding of how structures in the universe formed.

"The broader the timeline, the better our chances of being accurate. Instrumentation is key, and as it evolves, we'll keep pushing the boundaries."

For more information on the Z-FOURGE collaboration and their results, go to

To learn more about Texas A&M Astronomy, visit

To see a video animation of the discovery produced by Spitler, go to

Media contact: Shana K. Hutchins, (979) 862-1237 or; Dr. Kim-Vy Tran, (979) 458-7922 or; or Dr. Casey Papovich, (979) 862-2704 or

Shana Hutchins | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>