Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Texas A&M astronomers help find distant galaxy cluster to shed light on early universe

07.03.2012
A decade ago, Houston businessman and philanthropist George P. Mitchell was so certain there were big discoveries to be made in physics and astronomy and that they should come out of Texas A&M University, he put money on it, endowing the George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy to bring the world's most eminent minds in physics and astronomy to Aggieland.

Last June that investment paid off when an international collaboration featuring Texas A&M astronomers Dr. Kim-Vy Tran and Dr. Casey Papovich gathered at Mitchell's Cook's Branch Conservancy (a picturesque 6,000-acre preserve in the east Texas Pineywoods northwest of Houston) for a team brainstorm that recently resulted in the breakthrough discovery of the most distant galaxy cluster found to date.

"This discovery was actually made at Cook's Branch this past June," Tran says. "We were just starting to analyze the data, and Lee [Spitler] had just found this object, so we started talking about it that day."

Galaxy clusters, known as the "urban centers" of the universe, today may contain thousands of galaxies and are viewed as important building blocks with the power to unlock the mysteries of galaxy evolution and conditions in the universe's earliest moments. Tran notes this cluster is located 10.5 billion light-years away from our own Milky Way galaxy and is made up of a dense concentration of 30 galaxies that is the seed for a much bigger "city."

"Our galaxy cluster is observed when the universe was only three billion years old," says Spitler, an astrophysicist at Swinburne University of Technology in Australia and lead author of the team's study, known as the FourStar Galaxy Evolution Survey (Z-FOURGE). "This means it is still young and should continue to grow into an extremely dense structure containing many more galaxies."

The team's findings, funded in part through the National Science Foundation, will be published in the Astrophysical Journal Letters.

Much like Mitchell's vision of Texas A&M as a diamond in the rough, the Z-FOURGE team likewise discovered their recent find hidden in plain sight — essentially the middle of one of the most well-studied regions in the sky. Located near the star constellation Leo, Spitler notes this region has been carefully examined for thousands of hours using all major observing facilities on the ground and in space, including nearly one month of observing time from the Hubble Space Telescope.

Papovich credits the team's discovery to solid science and analysis armed with modern technology — in this case, a new camera built by Z-FOURGE collaborators at Carnegie Observatories. The camera, dubbed FourStar and installed in December 2010 on the Magellan 6.5-meter telescope in Chile, features five specially designed infrared filters that deliver an unprecedentedly precise combination of wavelength resolution and low-light sensitivity, thereby enabling the team to accurately measure the distances to thousands of different galaxies at a time, including those too faint to be detected through previous methods.

"Most other surveys were just looking at the tip of the iceberg," Tran explains. "The modern technology contained in this camera enabled us to detect the faintest light possible, allowing us to see much more of the iceberg than previously revealed.

"It's like we're using a comb to sift through the very distant universe. The combination of filters and depth provided by this camera give us the equivalent of more teeth, resulting in better measurements and more accurate results."

From the first six months of the survey, the team obtained accurate distances for faint galaxies across a region about one-fifth the size of the Moon as seen from Earth. Though the area is relatively small, they found roughly a thousand galaxies more than 10.5 billion light-years away.

"These new filters are a novel approach; it's a bit like being able to do a CAT scan of the sky to rapidly make a 3-D picture of the early universe," says Swinburne's Karl Glazebrook, who is leading the Australian component of the international collaboration formed in 2009.

The Z-FOURGE survey is led by Dr. Ivo Labbe at Leiden Observatories in The Netherlands.

"These are the first steps of accurately measuring the rate at which these large urban cities formed in a dark-matter-dominated universe," Papovich says. "The rate at which they come together tests our understanding of how structures in the universe formed.

"The broader the timeline, the better our chances of being accurate. Instrumentation is key, and as it evolves, we'll keep pushing the boundaries."

For more information on the Z-FOURGE collaboration and their results, go to http://z-fourge.strw.leidenuniv.nl/index.html.

To learn more about Texas A&M Astronomy, visit http://astronomy.tamu.edu/.

To see a video animation of the discovery produced by Spitler, go to http://faculty.physics.tamu.edu/vy/downloads/zfourge/z22_movie.m4v.mp4.

Media contact: Shana K. Hutchins, (979) 862-1237 or shutchins@science.tamu.edu; Dr. Kim-Vy Tran, (979) 458-7922 or vy@physics.tamu.edu; or Dr. Casey Papovich, (979) 862-2704 or papovich@physics.tamu.edu

Shana Hutchins | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

New 3-D model predicts best planting practices for farmers

26.06.2017 | Agricultural and Forestry Science

New research reveals impact of seismic surveys on zooplankton

26.06.2017 | Life Sciences

Correct connections are crucial

26.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>