Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Another Test for Mirrors on Biggest Space Telescope

25.07.2011
The mirrors that Dr. James Hadaway and his associates will soon test for NASA's next great space observatory look pretty much like he thought they should look 15 years ago.

Scheduled to arrive at NASA's Marshall Space Flight Center on Monday, July 25, six gold-coated mirrors for the James Webb Space Telescope (JWST) must be tested under extreme conditions to ensure that the mirrors will be smooth and focused when they are put to work most of a million miles from Earth.

A principal research scientist at The University of Alabama in Huntsville's Center for Applied Optics, Hadaway leads the optical testing of the Webb telescope's 18 primary mirrors. Subcontractors through Ball Aerospace, he and Dr. Patrick Reardon are part of a team working to ensure that the Webb telescope sees everything it should see. The observatory was designed to look at stars and galaxies on the distant edges of the universe.

The mirrors arriving next week are the second of three sets. The first six mirrors all passed their tests in April and May, despite Marshall Space Flight Center (MSFC) losing electric power following an outbreak of tornadoes in late April.

"We had six mirrors in the vacuum chamber and we were at the cold temperature -- 45 Kelvin (about 378° F below zero) -- and we had finished measurements on three mirrors by that Wednesday afternoon," recalled Hadaway. "It was a pretty critical time. It takes a lot to get and keep these mirrors cold.

"We knew something bad was happening outside, but we had to focus on what we were doing."

UAHuntsville's optical measurement team headed for home about 5:30 that afternoon, just before the power went out at MSFC. That included power to the X-Ray and Cryogenic Facility (XRCF) where the mirror testing is done.

"Fortunately, the XRCF has a diesel generator to keep things running in a power outage," Hadaway said. "That night they e-mailed us, 'We're still good,' so for the next three days we were out there taking data. They only had enough power for the instruments and to maintain the chamber, so by Saturday it was up to 85 inside the building. But we ended up getting all of our data as planned, on budget and on schedule.

"The real story on this is the people who run the facility. They're the ones who did the heroic job, arranging for enough diesel fuel, liquid nitrogen, liquid helium and all the other things needed to keep us running. They did a great job of keeping everything going."

Once they are cooled to the temperature of deep space, the extraordinarily smooth mirrors have to be warmed slowly over a period of several days to avoid damage, distortion or condensation, which could leave behind deposits on the polished gold surface.

Hadaway has been part of the Webb telescope program from its beginning, when he led the optical design team that came up with the initial layout for the telescope. More than two and a half times bigger than the Hubble space telescope, the Webb will collect infrared radiation (energy that our bodies sense as heat) from the most distant stars and galaxies ever viewed.

"The final optical design is basically the same as my original design," Hadaway said. "The optics weren't too difficult to design. The hard part was making lightweight mirrors that will survive launch loads and then deploy properly."

The next step would be building and testing mirrors, starting with engineering mockups and continuing with flight hardware.

What would have been routinely challenging was complicated by the observatory's working environment. Infrared energy includes the same wavelengths created when sunlight warms a spacecraft. To avoid polluting weak infrared radiation from galaxies on the edges of the universe with heat absorbed from sunlight, the Webb telescope will be shaded from the sun. Sitting in that shade, the mirrors will operate at temperatures about 45 degrees Celsius above absolute zero.

When the mission was proposed, no one knew how telescope mirrors built on Earth at room temperatures might bend and distort at temperatures that cold. During a meeting at NASA's Marshall Space Flight Center, officials wondered where they might find someone with the special knowledge and skills needed to organize and conduct a mirror testing program under those extreme conditions.

Hadaway stuck up his hand.

"We can do that," he said. After working with NASA to develop specialized mirrors used for X-ray telescopes, Hadaway was confident the CAO team could develop the tools needed to test mirrors designed to collect energy at the other end of the electromagnetic spectrum.

A house-sized cryogenic chamber in the XRCF, a facility built for testing the Chandra X-ray Observatory's optics, was adapted for testing Webb mirrors at extremely cold temperatures.

Using techniques that they developed, "we measured to see how each mirror deforms when it 'goes cold,'" Hadaway said. "We send what we find to Tinsley Laboratories in Richmond, California, which polishes opposite distortions into the mirrors. If it was a bump when it was cold, they polish in a hole. Now it looks bad at room temperature, but it's perfect in the cold."

Perfect? The average imperfection allowed is the height of about 200 hydrogen atoms.

Testing mirrors in a massive insulated chamber requires Hadaway and his team to be flexible. "If it gets cold at 3 a.m., you go in at 3 a.m.," he said. "You go when they're cold. We try to work with the guys at Marshall so things work out in the daytime, but you just have to be there when it's time."

The mirror-testing program is scheduled to end by the end of this year, although Hadaway expects to be involved in the Webb telescope's ongoing testing, development and preparations for a possible launch in 2015. In the 15 years he has been involved in the program, Hadaway's team has received more than $5 million in NASA funding to support UAHuntsville's work.

"I was part of this program from day one," he said. "My goal is to be there when it's on orbit and certified to be operational."

Dr. James Hadaway, (256) 824-2533
hadaway@uah.edu
Ray Garner
256.824.6397
ray.garner@uah.edu

Ray Garner | Newswise Science News
Further information:
http://www.uah.edu

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>