Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Another Test for Mirrors on Biggest Space Telescope

25.07.2011
The mirrors that Dr. James Hadaway and his associates will soon test for NASA's next great space observatory look pretty much like he thought they should look 15 years ago.

Scheduled to arrive at NASA's Marshall Space Flight Center on Monday, July 25, six gold-coated mirrors for the James Webb Space Telescope (JWST) must be tested under extreme conditions to ensure that the mirrors will be smooth and focused when they are put to work most of a million miles from Earth.

A principal research scientist at The University of Alabama in Huntsville's Center for Applied Optics, Hadaway leads the optical testing of the Webb telescope's 18 primary mirrors. Subcontractors through Ball Aerospace, he and Dr. Patrick Reardon are part of a team working to ensure that the Webb telescope sees everything it should see. The observatory was designed to look at stars and galaxies on the distant edges of the universe.

The mirrors arriving next week are the second of three sets. The first six mirrors all passed their tests in April and May, despite Marshall Space Flight Center (MSFC) losing electric power following an outbreak of tornadoes in late April.

"We had six mirrors in the vacuum chamber and we were at the cold temperature -- 45 Kelvin (about 378° F below zero) -- and we had finished measurements on three mirrors by that Wednesday afternoon," recalled Hadaway. "It was a pretty critical time. It takes a lot to get and keep these mirrors cold.

"We knew something bad was happening outside, but we had to focus on what we were doing."

UAHuntsville's optical measurement team headed for home about 5:30 that afternoon, just before the power went out at MSFC. That included power to the X-Ray and Cryogenic Facility (XRCF) where the mirror testing is done.

"Fortunately, the XRCF has a diesel generator to keep things running in a power outage," Hadaway said. "That night they e-mailed us, 'We're still good,' so for the next three days we were out there taking data. They only had enough power for the instruments and to maintain the chamber, so by Saturday it was up to 85 inside the building. But we ended up getting all of our data as planned, on budget and on schedule.

"The real story on this is the people who run the facility. They're the ones who did the heroic job, arranging for enough diesel fuel, liquid nitrogen, liquid helium and all the other things needed to keep us running. They did a great job of keeping everything going."

Once they are cooled to the temperature of deep space, the extraordinarily smooth mirrors have to be warmed slowly over a period of several days to avoid damage, distortion or condensation, which could leave behind deposits on the polished gold surface.

Hadaway has been part of the Webb telescope program from its beginning, when he led the optical design team that came up with the initial layout for the telescope. More than two and a half times bigger than the Hubble space telescope, the Webb will collect infrared radiation (energy that our bodies sense as heat) from the most distant stars and galaxies ever viewed.

"The final optical design is basically the same as my original design," Hadaway said. "The optics weren't too difficult to design. The hard part was making lightweight mirrors that will survive launch loads and then deploy properly."

The next step would be building and testing mirrors, starting with engineering mockups and continuing with flight hardware.

What would have been routinely challenging was complicated by the observatory's working environment. Infrared energy includes the same wavelengths created when sunlight warms a spacecraft. To avoid polluting weak infrared radiation from galaxies on the edges of the universe with heat absorbed from sunlight, the Webb telescope will be shaded from the sun. Sitting in that shade, the mirrors will operate at temperatures about 45 degrees Celsius above absolute zero.

When the mission was proposed, no one knew how telescope mirrors built on Earth at room temperatures might bend and distort at temperatures that cold. During a meeting at NASA's Marshall Space Flight Center, officials wondered where they might find someone with the special knowledge and skills needed to organize and conduct a mirror testing program under those extreme conditions.

Hadaway stuck up his hand.

"We can do that," he said. After working with NASA to develop specialized mirrors used for X-ray telescopes, Hadaway was confident the CAO team could develop the tools needed to test mirrors designed to collect energy at the other end of the electromagnetic spectrum.

A house-sized cryogenic chamber in the XRCF, a facility built for testing the Chandra X-ray Observatory's optics, was adapted for testing Webb mirrors at extremely cold temperatures.

Using techniques that they developed, "we measured to see how each mirror deforms when it 'goes cold,'" Hadaway said. "We send what we find to Tinsley Laboratories in Richmond, California, which polishes opposite distortions into the mirrors. If it was a bump when it was cold, they polish in a hole. Now it looks bad at room temperature, but it's perfect in the cold."

Perfect? The average imperfection allowed is the height of about 200 hydrogen atoms.

Testing mirrors in a massive insulated chamber requires Hadaway and his team to be flexible. "If it gets cold at 3 a.m., you go in at 3 a.m.," he said. "You go when they're cold. We try to work with the guys at Marshall so things work out in the daytime, but you just have to be there when it's time."

The mirror-testing program is scheduled to end by the end of this year, although Hadaway expects to be involved in the Webb telescope's ongoing testing, development and preparations for a possible launch in 2015. In the 15 years he has been involved in the program, Hadaway's team has received more than $5 million in NASA funding to support UAHuntsville's work.

"I was part of this program from day one," he said. "My goal is to be there when it's on orbit and certified to be operational."

Dr. James Hadaway, (256) 824-2533
hadaway@uah.edu
Ray Garner
256.824.6397
ray.garner@uah.edu

Ray Garner | Newswise Science News
Further information:
http://www.uah.edu

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>